Physics-
General
Easy
Question
Water is filled in a cylindrical container to a height of 3 m. The ratio of the cross–sectional area of the orifice and the beaker is 0.1. The square of the speed of the liquid coming out from the orifice is
The correct answer is:
Related Questions to study
Physics-
The pressure of a medium is changed from Pa and change in volume is 10% keeping temperature constant. The bulk modulus of the medium is :–
The pressure of a medium is changed from Pa and change in volume is 10% keeping temperature constant. The bulk modulus of the medium is :–
Physics-General
Physics-
The adjacent graph shows the extension ) of a wire of length 1m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross–sectional area of the wire is , calculate the Young's modulus of the material of the wire :–
The adjacent graph shows the extension ) of a wire of length 1m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross–sectional area of the wire is , calculate the Young's modulus of the material of the wire :–
Physics-General
Physics-
A wooden block, with a coin placed on its top, floats in water as shown in figure. The distance and h are shown there. After sometime the coin falls into the water. Then :–
A wooden block, with a coin placed on its top, floats in water as shown in figure. The distance and h are shown there. After sometime the coin falls into the water. Then :–
Physics-General
Physics-
A hemispherical portion of radius R is removed from the bottom of a cylinder of radius R. The volume of the remaining cylinder is V and mass M. It is suspended by a string in a liquid of density , where it stays vertical. The upper surface of the cylinder is at a depth h below the liquid surface. The force on the bottom of the cylinder by the liquid is :–
A hemispherical portion of radius R is removed from the bottom of a cylinder of radius R. The volume of the remaining cylinder is V and mass M. It is suspended by a string in a liquid of density , where it stays vertical. The upper surface of the cylinder is at a depth h below the liquid surface. The force on the bottom of the cylinder by the liquid is :–
Physics-General
Physics-
There is a circular tube in a vertical plane. Two liquids which do not mix and of densities and are filled in the tube. Each liquid subtends angle at centre. Radius joining their interface makes an angle with vertical. ratio is
There is a circular tube in a vertical plane. Two liquids which do not mix and of densities and are filled in the tube. Each liquid subtends angle at centre. Radius joining their interface makes an angle with vertical. ratio is
Physics-General
Physics-
A thin liquid film formed between a U-shaped wire and a light slider supports a weight of (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is :-
A thin liquid film formed between a U-shaped wire and a light slider supports a weight of (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is :-
Physics-General
Physics-
A jar is filled with two non-mixing ligud is 1 and 2 having densities and , respectively. A solid ball, made of a material of density , is dropped in the jar. It comes to equilibrium in the position shown in the figure. Which of the following is true for and
A jar is filled with two non-mixing ligud is 1 and 2 having densities and , respectively. A solid ball, made of a material of density , is dropped in the jar. It comes to equilibrium in the position shown in the figure. Which of the following is true for and
Physics-General
Physics-
A spherical solid ball of volume V is made of a material of density . It is falling through a liquid of density . Assume that the liquid applies a viscous force on the ball that is propoertional to the square of its speed v, i.e., . Then terminal speed of the ball is
A spherical solid ball of volume V is made of a material of density . It is falling through a liquid of density . Assume that the liquid applies a viscous force on the ball that is propoertional to the square of its speed v, i.e., . Then terminal speed of the ball is
Physics-General
Physics-
Newton's laws of motion can be applied to a block in liquid also. Force due to liquid (e.g., upthrust) are also considered in addition to other forces. A small block of weight W is kept inside. The block is attached with a string connected to the bottom of the vessel. Tension in the string is W/2 If weight of the block is doubled, then tension in the string becomes x times and the time calculated above becomes y times. Then
Newton's laws of motion can be applied to a block in liquid also. Force due to liquid (e.g., upthrust) are also considered in addition to other forces. A small block of weight W is kept inside. The block is attached with a string connected to the bottom of the vessel. Tension in the string is W/2 If weight of the block is doubled, then tension in the string becomes x times and the time calculated above becomes y times. Then
Physics-General
Physics-
Newton's laws of motion can be applied to a block in liquid also. Force due to liquid (e.g., upthrust) are also considered in addition to other forces. A small block of weight W is kept inside. The block is attached with a string connected to the bottom of the vessel. Tension in the string is W/2 The string is cut. Find the time when it reaches the surface of the liquid
Newton's laws of motion can be applied to a block in liquid also. Force due to liquid (e.g., upthrust) are also considered in addition to other forces. A small block of weight W is kept inside. The block is attached with a string connected to the bottom of the vessel. Tension in the string is W/2 The string is cut. Find the time when it reaches the surface of the liquid
Physics-General
Physics-
In a U–tube, if different liquids are filled then we can say that pressure at same level of same liquid is same. If small but equal lengths of liquid –1 and liquid –2 are increased in their corresponding sides then h will
In a U–tube, if different liquids are filled then we can say that pressure at same level of same liquid is same. If small but equal lengths of liquid –1 and liquid –2 are increased in their corresponding sides then h will
Physics-General
Physics-
In a U–tube, if different liquids are filled then we can say that pressure at same level of same liquid is same. In a U–tube 20 cm of a liquid of density is on left hand side and 10 cm of another liquid of density 1.5 is on right hand side. In between them there is a third liquid of density 2. What is the value of h
In a U–tube, if different liquids are filled then we can say that pressure at same level of same liquid is same. In a U–tube 20 cm of a liquid of density is on left hand side and 10 cm of another liquid of density 1.5 is on right hand side. In between them there is a third liquid of density 2. What is the value of h
Physics-General
Physics-
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg:The power supplied to the cart, when its velocity becomes 5 m/s, is equal to :
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg:The power supplied to the cart, when its velocity becomes 5 m/s, is equal to :
Physics-General
Physics-
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg: The time at which velocity of cart becomes 2m/s, is equal to:
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg: The time at which velocity of cart becomes 2m/s, is equal to:
Physics-General
Physics-
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg: In the above problem, what is the acceleration of cart at this instant –
When jet of liquid strikes a fixed or moving surface, it exerts thrust on it due to rate of change of momentum. F
If surface is free and starts moving due to thrust of liquid, then at any instant, the above equation gets modified based on relative change of momentum with respect to surface. Let any instant the velocity of surface is u, then above equation becomes –
Based on above concept, in the below given figure, if the cart is frictionless and free to move in horizontal direction, then answer the following :Given cross–section area of jet = velocity of jet , density of liquid = , Mass of cart M = 10 kg: In the above problem, what is the acceleration of cart at this instant –
Physics-General