Chemistry-
General
Easy

Question

The process of bringing the metal or its ore into solution by the action of a suitable chemical reagent followed by extraction of the metal either by electrolysis or by a suitable precipitating agent i.e. more electropositive metal is called

  1. electrometallurgy    
  2. hydrometallurgy    
  3. electro-refining    
  4. zone refining.    

The correct answer is: hydrometallurgy


    Related Questions to study

    General
    chemistry-

    In the froth floatation process for the purification of minerals the particles float because :

    In the froth floatation process for the purification of minerals the particles float because :

    chemistry-General
    General
    maths-

    Statement‐I: The function f left parenthesis x right parenthesis equals not stretchy integral subscript 0 end subscript superscript x end superscript square root of 1 plus t to the power of 2 end exponent end root d t is an odd function and g left parenthesis x right parenthesis equals f to the power of ’ end exponent left parenthesis x right parenthesis is an even function.
    Statement‐II: For a differentiable function f left parenthesis x right parenthesis if f to the power of ’ end exponent left parenthesis x right parenthesis is an even function then f left parenthesis x right parenthesis is an odd function.

    Statement‐I: The function f left parenthesis x right parenthesis equals not stretchy integral subscript 0 end subscript superscript x end superscript square root of 1 plus t to the power of 2 end exponent end root d t is an odd function and g left parenthesis x right parenthesis equals f to the power of ’ end exponent left parenthesis x right parenthesis is an even function.
    Statement‐II: For a differentiable function f left parenthesis x right parenthesis if f to the power of ’ end exponent left parenthesis x right parenthesis is an even function then f left parenthesis x right parenthesis is an odd function.

    maths-General
    General
    maths-

    Statement‐I:: not stretchy integral subscript blank superscript blank 2 to the power of t a n to the power of negative 1 end exponent x end exponent d left parenthesis c o t to the power of negative 1 end exponent x right parenthesis equals fraction numerator 2 to the power of t w to the power of negative 1 end exponent x end exponent over denominator l n 2 end fraction plus c
    Statement‐II : fraction numerator d over denominator d x end fraction left parenthesis a to the power of x end exponent plus c right parenthesis equals a to the power of x end exponent l n a

    Statement‐I:: not stretchy integral subscript blank superscript blank 2 to the power of t a n to the power of negative 1 end exponent x end exponent d left parenthesis c o t to the power of negative 1 end exponent x right parenthesis equals fraction numerator 2 to the power of t w to the power of negative 1 end exponent x end exponent over denominator l n 2 end fraction plus c
    Statement‐II : fraction numerator d over denominator d x end fraction left parenthesis a to the power of x end exponent plus c right parenthesis equals a to the power of x end exponent l n a

    maths-General
    parallel
    General
    maths-

    The value of not stretchy integral subscript blank superscript blank blank x. fraction numerator l n left parenthesis x plus square root of 1 plus x to the power of 2 end exponent end root right parenthesis over denominator square root of 1 plus x to the power of 2 end exponent end root end fraction d x equals:

    The value of not stretchy integral subscript blank superscript blank blank x. fraction numerator l n left parenthesis x plus square root of 1 plus x to the power of 2 end exponent end root right parenthesis over denominator square root of 1 plus x to the power of 2 end exponent end root end fraction d x equals:

    maths-General
    General
    maths-

    not stretchy integral subscript blank superscript blank fraction numerator d x over denominator blank c o s blank x minus blank s i n blank x end fraction is equal to‐

    not stretchy integral subscript blank superscript blank fraction numerator d x over denominator blank c o s blank x minus blank s i n blank x end fraction is equal to‐

    maths-General
    General
    maths-

    not stretchy integral subscript blank superscript blank fraction numerator x to the power of 4 end exponent minus 4 over denominator x to the power of 2 end exponent square root of 4 plus x to the power of 2 end exponent plus x to the power of 4 end exponent end root end fraction d x equals‐

    not stretchy integral subscript blank superscript blank fraction numerator x to the power of 4 end exponent minus 4 over denominator x to the power of 2 end exponent square root of 4 plus x to the power of 2 end exponent plus x to the power of 4 end exponent end root end fraction d x equals‐

    maths-General
    parallel
    General
    maths-

    If f left parenthesis x right parenthesis equals not stretchy integral subscript blank superscript blank fraction numerator 2 blank s i n blank x minus blank s i n blank 2 x over denominator x to the power of 3 end exponent end fraction d x, where x not equal to 0, then Limitx rightwards arrow 0 f to the power of ´ end exponent left parenthesis x right parenthesis has the value

    If f left parenthesis x right parenthesis equals not stretchy integral subscript blank superscript blank fraction numerator 2 blank s i n blank x minus blank s i n blank 2 x over denominator x to the power of 3 end exponent end fraction d x, where x not equal to 0, then Limitx rightwards arrow 0 f to the power of ´ end exponent left parenthesis x right parenthesis has the value

    maths-General
    General
    maths-

    not stretchy integral subscript blank superscript blank fraction numerator left parenthesis 2 x plus 1 right parenthesis over denominator left parenthesis x to the power of 2 end exponent plus 4 x plus 1 right parenthesis to the power of 3 divided by 2 end exponent end fraction d x

    not stretchy integral subscript blank superscript blank fraction numerator left parenthesis 2 x plus 1 right parenthesis over denominator left parenthesis x to the power of 2 end exponent plus 4 x plus 1 right parenthesis to the power of 3 divided by 2 end exponent end fraction d x

    maths-General
    General
    maths-

    The equation of the directrix of the parabola y to the power of 2 end exponent plus 4 y plus 4 x plus 2 equals 0 comma i s colon

    The equation of the directrix of the parabola y to the power of 2 end exponent plus 4 y plus 4 x plus 2 equals 0 comma i s colon

    maths-General
    parallel
    General
    Maths-

    The equation of the common tangent touching the circle left parenthesis x minus 3 right parenthesis to the power of 2 end exponent plus y to the power of 2 end exponent equals 9 and the parabola y to the power of 2 end exponent equals 4 x above the x‐axis is:

    The equation of the common tangent touching the circle left parenthesis x minus 3 right parenthesis to the power of 2 end exponent plus y to the power of 2 end exponent equals 9 and the parabola y to the power of 2 end exponent equals 4 x above the x‐axis is:

    Maths-General
    General
    Maths-

    If the line x‐1 =0 is the directrix of the parabola y to the power of 2 end exponent minus k x plus 8 equals 0, then one of the values of k is :

    If the line x‐1 =0 is the directrix of the parabola y to the power of 2 end exponent minus k x plus 8 equals 0, then one of the values of k is :

    Maths-General
    General
    maths-

    Assertion (A): Three normals are drawn from the point P’ with slopes m subscript 1 end subscript comma m subscript 2 end subscript comma m subscript 3 end subscript to the parabola y to the power of 2 end exponent equals 4 x If locus of ‘ P’ with m subscript 1 end subscript m subscript 2 end subscript equals alpha is a part of the parabola itself then alpha equals 2
    Reason (R): If normals at left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis and left parenthesis y subscript 3 end subscript comma y subscript 3 end subscript right parenthesis are concurrent then y subscript 1 end subscript plus y subscript 2 end subscript plus y subscript 3 end subscript equals 0

    Assertion (A): Three normals are drawn from the point P’ with slopes m subscript 1 end subscript comma m subscript 2 end subscript comma m subscript 3 end subscript to the parabola y to the power of 2 end exponent equals 4 x If locus of ‘ P’ with m subscript 1 end subscript m subscript 2 end subscript equals alpha is a part of the parabola itself then alpha equals 2
    Reason (R): If normals at left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis and left parenthesis y subscript 3 end subscript comma y subscript 3 end subscript right parenthesis are concurrent then y subscript 1 end subscript plus y subscript 2 end subscript plus y subscript 3 end subscript equals 0

    maths-General
    parallel
    General
    maths-

    ABCD and EFGC are squares and the curve y equals k square root of x passes through the origin D and the points B and F The ratio fraction numerator F G over denominator B C end fraction is:

    ABCD and EFGC are squares and the curve y equals k square root of x passes through the origin D and the points B and F The ratio fraction numerator F G over denominator B C end fraction is:

    maths-General
    General
    maths-

    Statement‐I :: With respect to a hyperbola fraction numerator x to the power of 2 end exponent over denominator 9 end fraction minus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 pependicular are drawn from a point (5, 0) on the lines 3 y plus-or-minus 4 x equals 0, then their feet lie on circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 16.
    Statement‐II :: If from any foci of a hyperbola perpendicular are drawn on the asymptotes of the hyperbola then their feet lie on auxiliary circle.

    Statement‐I :: With respect to a hyperbola fraction numerator x to the power of 2 end exponent over denominator 9 end fraction minus fraction numerator y to the power of 2 end exponent over denominator 16 end fraction equals 1 pependicular are drawn from a point (5, 0) on the lines 3 y plus-or-minus 4 x equals 0, then their feet lie on circle x to the power of 2 end exponent plus y to the power of 2 end exponent equals 16.
    Statement‐II :: If from any foci of a hyperbola perpendicular are drawn on the asymptotes of the hyperbola then their feet lie on auxiliary circle.

    maths-General
    General
    maths-

    A hyperbola, having the transverse axis of length 2 s i n, is confocal with the ellipse 3 x to the power of 2 end exponent plus 4 y to the power of 2 end exponent equals 12 Then its equation is ‐

    A hyperbola, having the transverse axis of length 2 s i n, is confocal with the ellipse 3 x to the power of 2 end exponent plus 4 y to the power of 2 end exponent equals 12 Then its equation is ‐

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.