Maths-
General
Easy

Question

There are two possible value of A in the solution of the matrix equationopen square brackets table row cell 2 A plus 1 end cell cell negative 5 end cell row cell negative 4 end cell A end table close square brackets to the power of negative 1 end exponent open square brackets table row cell A minus 5 end cell B row cell 2 A minus 2 end cell C end table close square brackets= open square brackets table row 14 D row E F end table close square brackets, where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is:

  1. fraction numerator 8 over denominator 3 end fraction    
  2. fraction numerator 11 over denominator 3 end fraction    
  3. fraction numerator 1 over denominator 3 end fraction    
  4. fraction numerator 19 over denominator 3 end fraction    

The correct answer is: fraction numerator 19 over denominator 3 end fraction


    open square brackets table row cell 2 A plus 1 end cell cell negative 5 end cell row cell negative 4 end cell A end table close square brackets to the power of negative 1 end exponentfraction numerator 1 over denominator 2 A squared plus A minus 20 end fraction open square brackets table attributes columnalign center center columnspacing 1em end attributes row A 5 row 4 cell 2 A plus 1 end cell end table close square brackets
    So fraction numerator 1 over denominator 2 A squared plus A minus 20 end fraction times open square brackets table attributes columnalign center center columnspacing 1em end attributes row straight A 5 row 4 cell 2 straight A plus 1 end cell end table close square brackets open square brackets table attributes columnalign center center columnspacing 1em end attributes row cell A minus 5 end cell B row cell 2 A minus 2 end cell C end table close square brackets
    =open square brackets table attributes columnalign center center columnspacing 1em end attributes row 14 D row E F end table close square brackets fraction numerator 1 over denominator 2 A to the power of 2 end exponent plus A minus 20 end fractionopen square brackets table row cell A left parenthesis A minus 5 right parenthesis plus 5 left parenthesis 2 A minus 2 right parenthesis end cell cell A B plus 5 C end cell row cell 4 left parenthesis A minus 5 right parenthesis plus left parenthesis 2 A plus 1 right parenthesis left parenthesis 2 A minus 2 right parenthesis end cell cell 4 B plus C left parenthesis 2 A plus 1 right parenthesis end cell end table close square brackets
    = open square brackets table row 14 D row E F end table close square brackets
    so fraction numerator A to the power of 2 end exponent plus 5 A minus 10 over denominator 2 A to the power of 2 end exponent plus A minus 20 end fraction= 14 rightwards double arrowA = 3, fraction numerator negative 10 over denominator 3 end fraction

    Related Questions to study

    General
    maths-

    For a given matrix A = open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets which of the following statement holds good:

    For a given matrix A = open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets which of the following statement holds good:

    maths-General
    General
    maths-

    A and B are two given matrices such that the order of A is 3 × 4, If A'B and BA' are both defined then:

    A and B are two given matrices such that the order of A is 3 × 4, If A'B and BA' are both defined then:

    maths-General
    General
    maths-

    If A is an involuntary matrix given byA = open square brackets table row 0 1 cell negative 1 end cell row 4 cell negative 3 end cell 4 row 3 cell negative 3 end cell 4 end table close square bracketsthen the inverse of fraction numerator A over denominator 2 end fractionwill be

    If A is an involuntary matrix given byA = open square brackets table row 0 1 cell negative 1 end cell row 4 cell negative 3 end cell 4 row 3 cell negative 3 end cell 4 end table close square bracketsthen the inverse of fraction numerator A over denominator 2 end fractionwill be

    maths-General
    parallel
    General
    maths-

    Matrix A =open square brackets table row x 3 2 row 1 y 4 row 2 2 z end table close square brackets, If xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to:

    Matrix A =open square brackets table row x 3 2 row 1 y 4 row 2 2 z end table close square brackets, If xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to:

    maths-General
    General
    Maths-

    Let A =open square brackets table row 1 0 0 row 2 1 0 row 3 2 1 end table close square brackets. If U1, U2, U3 are column matrices satisfying AU1 = open square brackets table row 1 row 0 row 0 end table close square brackets, AU2 = open square brackets table row 2 row 3 row 0 end table close square brackets, AU3 = open square brackets table row 2 row 3 row 1 end table close square brackets and U is 3 × 3 matrix whose columns are U1, U2 and U3. Then |U| =

    Let A =open square brackets table row 1 0 0 row 2 1 0 row 3 2 1 end table close square brackets. If U1, U2, U3 are column matrices satisfying AU1 = open square brackets table row 1 row 0 row 0 end table close square brackets, AU2 = open square brackets table row 2 row 3 row 0 end table close square brackets, AU3 = open square brackets table row 2 row 3 row 1 end table close square brackets and U is 3 × 3 matrix whose columns are U1, U2 and U3. Then |U| =

    Maths-General
    General
    maths-

    If the matrix A = open square brackets table row 8 cell – 6 end cell 2 row cell – 6 end cell 7 cell – 4 end cell row 2 cell – 4 end cell lambda end table close square brackets is singular, then λ equal to -

    If the matrix A = open square brackets table row 8 cell – 6 end cell 2 row cell – 6 end cell 7 cell – 4 end cell row 2 cell – 4 end cell lambda end table close square brackets is singular, then λ equal to -

    maths-General
    parallel
    General
    maths-

    If AB = I and B = A' then :

    If AB = I and B = A' then :

    maths-General
    General
    maths-

    If A and B are square matrices of same size and |B| not equal to 0, then (B–1 AB)4 =

    If A and B are square matrices of same size and |B| not equal to 0, then (B–1 AB)4 =

    maths-General
    General
    maths-

    If B is non-singular matrix and A is a square matrix of same size, then det (B–1 AB) =

    If B is non-singular matrix and A is a square matrix of same size, then det (B–1 AB) =

    maths-General
    parallel
    General
    maths-

    If A satisfies the equation x3 – 5x2 + 4x + k = 0, then A–1 exists if -

    If A satisfies the equation x3 – 5x2 + 4x + k = 0, then A–1 exists if -

    maths-General
    General
    Maths-

    If 3A = open square brackets table row 1 2 2 row 2 1 cell – 2 end cell row x 2 y end table close square bracketsand A is orthogonal, then x + y =

    If 3A = open square brackets table row 1 2 2 row 2 1 cell – 2 end cell row x 2 y end table close square bracketsand A is orthogonal, then x + y =

    Maths-General
    General
    maths-

    If A, B are symmetric matrices of the same order then (AB – BA) is -

    If A, B are symmetric matrices of the same order then (AB – BA) is -

    maths-General
    parallel
    General
    maths-

    If A = open square brackets table row 4 cell x plus 2 end cell row cell 2 x – 3 end cell cell x plus 1 end cell end table close square brackets is symmetric, then x =

    If A = open square brackets table row 4 cell x plus 2 end cell row cell 2 x – 3 end cell cell x plus 1 end cell end table close square brackets is symmetric, then x =

    maths-General
    General
    Maths-

    If the rank of the matrix open square brackets table row 4 2 cell 1 minus x end cell row 5 k 1 row 6 3 cell 1 plus x end cell end table close square brackets is 2 then

    If the rank of the matrix open square brackets table row 4 2 cell 1 minus x end cell row 5 k 1 row 6 3 cell 1 plus x end cell end table close square brackets is 2 then

    Maths-General
    General
    Maths-

    If A = open square brackets table row cell cos invisible function application theta end cell cell – sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AT + A = I2, if –

    If A = open square brackets table row cell cos invisible function application theta end cell cell – sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AT + A = I2, if –

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.