Physics-
General
Easy

Question

Consider a two-particle system with the particles having masses M1, and m2. If the first particle is pushed towards the center of mass through a distance d, by what distance should the second particle be moved so as to keep the center of mass at the same position?

  1. fraction numerator straight M subscript 1 straight d over denominator straight M subscript 1 plus straight M subscript 2 end fraction
  2. fraction numerator straight M subscript 2 straight d over denominator straight M subscript 1 plus straight M subscript 2 end fraction
  3. fraction numerator straight M subscript 1 straight d over denominator straight M subscript 2 end fraction
  4. fraction numerator straight M subscript 2 straight d over denominator straight M subscript 1 end fraction

The correct answer is: fraction numerator straight M subscript 1 straight d over denominator straight M subscript 2 end fraction

Related Questions to study

General
Maths-

For x element of R Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x minus 3 over denominator x plus 2 end fraction close parentheses to the power of x equals

There are seven indeterminate forms which are typically considered in the literature
{\displaystyle {\frac {0}{0}},~{\frac {\infty }{\infty }},~0\times \infty ,~\infty -\infty ,~0^{0},~1^{\infty },{\text{ and }}\infty ^{0}.}:

For x element of R Lt subscript x not stretchy rightwards arrow straight infinity end subscript space open parentheses fraction numerator x minus 3 over denominator x plus 2 end fraction close parentheses to the power of x equals

Maths-General

There are seven indeterminate forms which are typically considered in the literature
{\displaystyle {\frac {0}{0}},~{\frac {\infty }{\infty }},~0\times \infty ,~\infty -\infty ,~0^{0},~1^{\infty },{\text{ and }}\infty ^{0}.}:

General
physics-

Three particles of the same mass lie in the (X,Y) plane, The (X,Y) coordinates of their positions are (1,1),(2,2) and (3,3) respectively. The (X,Y) coordinates of the center of mass are

Three particles of the same mass lie in the (X,Y) plane, The (X,Y) coordinates of their positions are (1,1),(2,2) and (3,3) respectively. The (X,Y) coordinates of the center of mass are

physics-General
General
Maths-

Lt subscript h not stretchy rightwards arrow 0 end subscript space fraction numerator f open parentheses 2 h plus 2 plus h squared close parentheses minus f left parenthesis 2 right parenthesis over denominator f open parentheses h minus h squared plus 1 close parentheses minus f left parenthesis 1 right parenthesis end fraction given that f to the power of † left parenthesis 2 right parenthesis equals 6 text  and  end text f to the power of † left parenthesis 1 right parenthesis equals 4

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lt subscript h not stretchy rightwards arrow 0 end subscript space fraction numerator f open parentheses 2 h plus 2 plus h squared close parentheses minus f left parenthesis 2 right parenthesis over denominator f open parentheses h minus h squared plus 1 close parentheses minus f left parenthesis 1 right parenthesis end fraction given that f to the power of † left parenthesis 2 right parenthesis equals 6 text  and  end text f to the power of † left parenthesis 1 right parenthesis equals 4

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

parallel
General
Maths-

Lim subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator x tan space 2 x minus 2 x tan space x over denominator left parenthesis 1 minus cos space 2 x right parenthesis squared end fraction equals

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

Lim subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator x tan space 2 x minus 2 x tan space x over denominator left parenthesis 1 minus cos space 2 x right parenthesis squared end fraction equals

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
Maths-

If f left parenthesis a right parenthesis equals 2 comma f to the power of straight prime left parenthesis a right parenthesis equals 1 comma g left parenthesis a right parenthesis equals negative 1 comma g to the power of factorial left parenthesis a right parenthesis equals 2, then the value of Lim subscript x not stretchy rightwards arrow a end subscript space fraction numerator g left parenthesis x right parenthesis f left parenthesis a right parenthesis minus g left parenthesis a right parenthesis f left parenthesis x right parenthesis over denominator x minus a end fraction is

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 orfraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

If f left parenthesis a right parenthesis equals 2 comma f to the power of straight prime left parenthesis a right parenthesis equals 1 comma g left parenthesis a right parenthesis equals negative 1 comma g to the power of factorial left parenthesis a right parenthesis equals 2, then the value of Lim subscript x not stretchy rightwards arrow a end subscript space fraction numerator g left parenthesis x right parenthesis f left parenthesis a right parenthesis minus g left parenthesis a right parenthesis f left parenthesis x right parenthesis over denominator x minus a end fraction is

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 orfraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
physics-

Particles of 1gm,1gm,2gm,2gm are placed at the comers A,B,C,D, respectively of a square of side 6 text end text c m as shown in figure. Find the distance of centre of mass of the system from geometrical center of square.

Particles of 1gm,1gm,2gm,2gm are placed at the comers A,B,C,D, respectively of a square of side 6 text end text c m as shown in figure. Find the distance of centre of mass of the system from geometrical center of square.

physics-General
parallel
General
Maths-

If G left parenthesis x right parenthesis equals negative square root of 25 minus x squared end root then Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator G left parenthesis x right parenthesis minus G left parenthesis 1 right parenthesis over denominator x minus 1 end fraction has the value

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

If G left parenthesis x right parenthesis equals negative square root of 25 minus x squared end root then Lim subscript x not stretchy rightwards arrow 1 end subscript space fraction numerator G left parenthesis x right parenthesis minus G left parenthesis 1 right parenthesis over denominator x minus 1 end fraction has the value

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
maths-

If f left parenthesis x right parenthesis equals square root of fraction numerator x minus sin space x over denominator x plus cos space x end fraction end root then L t f left parenthesis x right parenthesis is

If f left parenthesis x right parenthesis equals square root of fraction numerator x minus sin space x over denominator x plus cos space x end fraction end root then L t f left parenthesis x right parenthesis is

maths-General
General
physics-

After the drop detaches its surface energy is

After the drop detaches its surface energy is

physics-General
parallel
General
physics-

If ell equals 5 cross times 10 to the power of negative 4 end exponent straight m comma rho equals 10 cubed kgm to the power of negative 3 end exponent equals 10 ms to the power of negative 2 end exponent straight T equals 0.11 Nm to the power of negative 1 end exponent the......... radius of the drop when it detaches from the dropper is approximately

If ell equals 5 cross times 10 to the power of negative 4 end exponent straight m comma rho equals 10 cubed kgm to the power of negative 3 end exponent equals 10 ms to the power of negative 2 end exponent straight T equals 0.11 Nm to the power of negative 1 end exponent the......... radius of the drop when it detaches from the dropper is approximately

physics-General
General
Maths-

text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text space text  Lt end text subscript x not stretchy rightwards arrow 9 end subscript fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that meansfraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

text  If  end text f left parenthesis 9 right parenthesis equals 9 comma f to the power of apostrophe left parenthesis 9 right parenthesis equals 4 comma text  then  end text space text  Lt end text subscript x not stretchy rightwards arrow 9 end subscript fraction numerator square root of f left parenthesis x right parenthesis end root minus 3 over denominator square root of x minus 3 end fraction text  equals  end text

Maths-General

We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that meansfraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

General
physics-

If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming r<<R) is:

If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming r<<R) is:

physics-General
parallel
General
maths-

L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin space open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

L t subscript x not stretchy rightwards arrow negative straight infinity end subscript open square brackets fraction numerator x to the power of 4 sin space open parentheses 1 over x close parentheses plus x squared over denominator open parentheses 1 plus vertical line x vertical line cubed close parentheses end fraction close square brackets equals

maths-General
General
Maths-

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

Lt subscript x not stretchy rightwards arrow straight infinity end subscript open square brackets fraction numerator a to the power of 1 over x end exponent plus b to the power of 1 over x end exponent plus c to the power of 1 over x end exponent over denominator 3 end fraction close square brackets to the power of x where a,b,c are real and non-zero=

Maths-General

The basic problem of this indeterminate form is to know from where f not stretchy left parenthesis x not stretchy right parenthesis tends to one (right or left) and what function reaches its limit more rapidly.

General
physics-

Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

Which graph present the variation of surface tension with temperature over small temperature ranges for coater.

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.