Question
Geeta spends 803.94 to buy a necklace and bracelet set for each of her friends. Each
necklace costs Rs 7.99 and each bracelet cost 5.89, how many necklace and bracelet
What sets did she buy?
Hint:
Form the equation using the given information.
○ Take variable quantity as x or any alphabet.
The correct answer is: Hence, Geeta buys 58 necklaces and 58 bracelets.
Answer:
- Step by step explanation:
○ Given:
Cost of necklace = Rs.7.99
Cost of bracelet = Rs.5.89
Total money spent = Rs.803.94
○ Step 1:
○ Let the number of necklace be x and number of bracelet be y.
The cost of 1 necklace is = R s. 7.99
he cost of 1 bracelet is = R s. 5.89
So,
The cost of one set will be:
cost of necklace + cost of bracelet
R s. 7.99 + R s. 5.89
R s. 13.88
○ Step 2:
○ Let Geeta buys x sets
The cost of 1 set is = R s. 13.88
The cost of x sets will be = R s. 13.88x
As given, the total money spend is Rs.803.94
∴ cost of x sets = 803.94
13.88x = 803.94
x =
x = 57.9
x ≈ 58
- Final Answer:
Hence, Geeta buys 58 necklaces and 58 bracelets.
Related Questions to study
Use either the square of a binomial or difference of squares to find the area of the square.
Use either the square of a binomial or difference of squares to find the area of the square.
Use a table to find the product.
(2𝑥 + 1) (4𝑥 + 1)
Use a table to find the product.
(2𝑥 + 1) (4𝑥 + 1)
Graph the equation on a coordinate plane.
Graph the equation on a coordinate plane.
Use a table to find the product.
(𝑥 − 6) (3𝑥 + 4)
Use a table to find the product.
(𝑥 − 6) (3𝑥 + 4)
Why the product of two binomials (𝑎 + 𝑏) and (𝑎 − 𝑏) is a binomial instead of a trinomial?
Why the product of two binomials (𝑎 + 𝑏) and (𝑎 − 𝑏) is a binomial instead of a trinomial?
Graph the equation
We can find the tabular values for any points of x and then plot them on the graph. But we usually choose values for which calculating y is easier. This makes plotting the graph simpler. We can also find the values by putting different values of y in the equation to get different values for x. Either way, we need points satisfying the equation to plot its graph.
Graph the equation
We can find the tabular values for any points of x and then plot them on the graph. But we usually choose values for which calculating y is easier. This makes plotting the graph simpler. We can also find the values by putting different values of y in the equation to get different values for x. Either way, we need points satisfying the equation to plot its graph.
The constant term in the product (𝑥 + 3) (𝑥 + 4) is
The constant term in the product (𝑥 + 3) (𝑥 + 4) is
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2