Maths-
General
Easy

Question

Assertion : There are only finitely many 2 ×2 matrices which commute with the matrix open square brackets table row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
Reason : If A is non-singular then it commutes with I, Adj A and A–1.

  1. If both (A) and (R) are true, and (R) is the correct explanation of (A).    
  2. If both (A) and (R) are true but (R) is not the correct explanation of (A).    
  3. If (A) is true but (R) is false.    
  4. If (A) is false but (R) is true.    

The correct answer is: If (A) is false but (R) is true.

Related Questions to study

General
maths-

Let a matrix A =open square brackets table row 1 1 row 0 1 end table close square brackets & P =open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets Q = PAPT where PT is transpose of matrix P. Find PT Q2005 P is

Let a matrix A =open square brackets table row 1 1 row 0 1 end table close square brackets & P =open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets Q = PAPT where PT is transpose of matrix P. Find PT Q2005 P is

maths-General
General
maths-

Let A = open square brackets table row 1 0 0 row 0 1 1 row 0 cell negative 2 end cell 4 end table close square brackets & I = open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets and A1 = fraction numerator 1 over denominator 6 end fraction [A2 + cA + dI], find ordered pair (c, d) ?]

Let A = open square brackets table row 1 0 0 row 0 1 1 row 0 cell negative 2 end cell 4 end table close square brackets & I = open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets and A1 = fraction numerator 1 over denominator 6 end fraction [A2 + cA + dI], find ordered pair (c, d) ?]

maths-General
General
maths-

open square brackets table row alpha 2 row 2 alpha end table close square brackets = A & | A3 | = 125, then alpha is -

open square brackets table row alpha 2 row 2 alpha end table close square brackets = A & | A3 | = 125, then alpha is -

maths-General
parallel
General
maths-

If A = open square brackets   table row alpha 0 row 1 1 end table   close square brackets, B = open square brackets   table row 1 0 row 5 1 end table   close square brackets and A2 = B, then

If A = open square brackets   table row alpha 0 row 1 1 end table   close square brackets, B = open square brackets   table row 1 0 row 5 1 end table   close square brackets and A2 = B, then

maths-General
General
Maths-

Let A be a square matrix all of whose entries are integers. Then which one of the following is true ?

Let A be a square matrix all of whose entries are integers. Then which one of the following is true ?

Maths-General
General
maths-

Let A = open square brackets table row 5 cell 5 alpha end cell alpha row 0 alpha cell 5 alpha end cell row 0 0 5 end table close square brackets If |A2| = 25, then |alpha| equals

Let A = open square brackets table row 5 cell 5 alpha end cell alpha row 0 alpha cell 5 alpha end cell row 0 0 5 end table close square brackets If |A2| = 25, then |alpha| equals

maths-General
parallel
General
Maths-

Let A = open parentheses table row 1 2 row 3 4 end table close parentheses and B = open parentheses table row a 0 row 0 b end table close parentheses , a, b element of N. Then

Let A = open parentheses table row 1 2 row 3 4 end table close parentheses and B = open parentheses table row a 0 row 0 b end table close parentheses , a, b element of N. Then

Maths-General
General
Maths-

If A and B are square matrices of size n × n such that A2 – B2 = (A – B) (A + B), then which of the following will be always true –

If A and B are square matrices of size n × n such that A2 – B2 = (A – B) (A + B), then which of the following will be always true –

Maths-General
General
Maths-

If A = open square brackets table row 1 0 row 1 1 end table close square brackets and I =open square brackets table row 1 0 row 0 1 end table close square brackets , then which one of the following holds for all n greater or equal than 1, by the principle of mathematical induction -

If A = open square brackets table row 1 0 row 1 1 end table close square brackets and I =open square brackets table row 1 0 row 0 1 end table close square brackets , then which one of the following holds for all n greater or equal than 1, by the principle of mathematical induction -

Maths-General
parallel
General
Maths-

If A2 – A + I = 0, then the inverse of A is

If A2 – A + I = 0, then the inverse of A is

Maths-General
General
Maths-

Let A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses. If B is the inverse of matrix A, then alpha is

Let A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses. If B is the inverse of matrix A, then alpha is

Maths-General
General
Maths-

Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

Maths-General
parallel
General
chemistry-

Bleaching powder has the molecular formula:

Bleaching powder has the molecular formula:

chemistry-General
General
Maths-

If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

Maths-General
General
maths-

If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.