Maths-
General
Easy

Question

If open square brackets table row alpha beta row gamma cell negative alpha end cell end table close square bracketsis square root of I2, then alpha comma beta and gamma will satisfy the relation- 

  1. 1 + alpha squared + beta gamma = 0    
  2. 1 –alpha squared + beta gamma = 0    
  3. 1 + alpha squared – beta gamma = 0    
  4. alpha squared + beta gamma = 1    

The correct answer is: alpha squared + beta gamma = 1


    open square brackets table row alpha beta row gamma cell negative alpha end cell end table close square brackets to the power of 2 end exponent= open square brackets table row 1 0 row 0 1 end table close square bracketsnot stretchy rightwards double arrow open square brackets table attributes columnalign center center columnspacing 1em end attributes row alpha beta row gamma cell negative alpha end cell end table close square brackets open square brackets table row alpha beta row gamma cell negative alpha end cell end table close square brackets = open square brackets table row 1 0 row 0 1 end table close square brackets
    not stretchy rightwards double arrow open square brackets table row cell alpha squared plus beta gamma end cell 0 row 0 cell alpha squared plus beta gamma end cell end table close square brackets= open square brackets table row 1 0 row 0 1 end table close square bracketsrightwards double arrowalpha squared plus beta gamma = 1

    Related Questions to study

    General
    maths-

    If A = open square brackets table row 4 2 row cell negative 1 end cell 1 end table close square brackets, then (A –2I) (A –3I) = 

    If A = open square brackets table row 4 2 row cell negative 1 end cell 1 end table close square brackets, then (A –2I) (A –3I) = 

    maths-General
    General
    maths-

    Let A = open square brackets table row 5 cell 5 alpha end cell alpha row 0 alpha cell 5 alpha end cell row 0 0 5 end table close square brackets. If | A2 | = 25, then |alpha| equals -

    Let A = open square brackets table row 5 cell 5 alpha end cell alpha row 0 alpha cell 5 alpha end cell row 0 0 5 end table close square brackets. If | A2 | = 25, then |alpha| equals -

    maths-General
    General
    maths-

    For the matrix A = open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which is correct -

    For the matrix A = open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which is correct -

    maths-General
    parallel
    General
    maths-

    If X = open square brackets table row 1 1 row 1 1 end table close square brackets, then Xn, for n element of N, is equal to -

    If X = open square brackets table row 1 1 row 1 1 end table close square brackets, then Xn, for n element of N, is equal to -

    maths-General
    General
    maths-

    If A, B and C are three square matrices of the same size such that B = CAC–1, then CA3C–1 is equal to -

    If A, B and C are three square matrices of the same size such that B = CAC–1, then CA3C–1 is equal to -

    maths-General
    General
    maths-

    If A = open square brackets table row i 0 row 0 i end table close square brackets, n element of N, then A4n equals -

    If A = open square brackets table row i 0 row 0 i end table close square brackets, n element of N, then A4n equals -

    maths-General
    parallel
    General
    maths-

    Let a matrix A = open square brackets table row 1 1 row 0 1 end table close square brackets, P = open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-

    Let a matrix A = open square brackets table row 1 1 row 0 1 end table close square brackets, P = open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-

    maths-General
    General
    maths-

    Let P be a non-singular matrix 1 + P + P2 +….. + Pn = O(O denotes the null matrix), then P–1 is- 

    Let P be a non-singular matrix 1 + P + P2 +….. + Pn = O(O denotes the null matrix), then P–1 is- 

    maths-General
    General
    maths-

    Let A = open square brackets table row cell cos to the power of 2 end exponent invisible function application theta end cell cell sin invisible function application theta cos invisible function application theta end cell row cell cos invisible function application theta sin invisible function application theta end cell cell sin to the power of 2 end exponent invisible function application theta end cell end table close square brackets and B = open square brackets table row cell cos to the power of 2 end exponent invisible function application phi end cell cell sin invisible function application phi cos invisible function application phi end cell row cell cos invisible function application phi sin invisible function application phi end cell cell sin to the power of 2 end exponent invisible function application phi end cell end table close square bracketsthen AB = 0, if- 

    Let A = open square brackets table row cell cos to the power of 2 end exponent invisible function application theta end cell cell sin invisible function application theta cos invisible function application theta end cell row cell cos invisible function application theta sin invisible function application theta end cell cell sin to the power of 2 end exponent invisible function application theta end cell end table close square brackets and B = open square brackets table row cell cos to the power of 2 end exponent invisible function application phi end cell cell sin invisible function application phi cos invisible function application phi end cell row cell cos invisible function application phi sin invisible function application phi end cell cell sin to the power of 2 end exponent invisible function application phi end cell end table close square bracketsthen AB = 0, if- 

    maths-General
    parallel
    General
    chemistry-

    Increasing order of strength of oxo-acids of chlorine is:

    Increasing order of strength of oxo-acids of chlorine is:

    chemistry-General
    General
    maths-

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to- 

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to- 

    maths-General
    General
    maths-

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square bracketsand X is a matrix such that A = BX, then X equals-

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square bracketsand X is a matrix such that A = BX, then X equals-

    maths-General
    parallel
    General
    maths-

    If A is a square matrix such that A2 = A, then |A| equals- 

    If A is a square matrix such that A2 = A, then |A| equals- 

    maths-General
    General
    maths-

    The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0

    The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0

    maths-General
    General
    maths-

    If Ak = 0, for some value of k, (I – A)p = I + A + A2 + …. Ak–1, thus p is (A is nilpotent with index k).

    If Ak = 0, for some value of k, (I – A)p = I + A + A2 + …. Ak–1, thus p is (A is nilpotent with index k).

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.