Maths-
General
Easy

Question

Let A = open square brackets table row 5 cell 5 alpha end cell alpha row 0 alpha cell 5 alpha end cell row 0 0 5 end table close square brackets. If | A2 | = 25, then |alpha| equals -

  1. 1/5    
  2. 5    
  3. 52    
  4. 1    

The correct answer is: 1/5

Related Questions to study

General
maths-

For the matrix A = open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which is correct -

For the matrix A = open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which is correct -

maths-General
General
maths-

If X = open square brackets table row 1 1 row 1 1 end table close square brackets, then Xn, for n element of N, is equal to -

If X = open square brackets table row 1 1 row 1 1 end table close square brackets, then Xn, for n element of N, is equal to -

maths-General
General
maths-

If A, B and C are three square matrices of the same size such that B = CAC–1, then CA3C–1 is equal to -

If A, B and C are three square matrices of the same size such that B = CAC–1, then CA3C–1 is equal to -

maths-General
parallel
General
maths-

If A = open square brackets table row i 0 row 0 i end table close square brackets, n element of N, then A4n equals -

If A = open square brackets table row i 0 row 0 i end table close square brackets, n element of N, then A4n equals -

maths-General
General
maths-

Let a matrix A = open square brackets table row 1 1 row 0 1 end table close square brackets, P = open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-

Let a matrix A = open square brackets table row 1 1 row 0 1 end table close square brackets, P = open square brackets table row cell fraction numerator square root of 3 over denominator 2 end fraction end cell cell fraction numerator 1 over denominator 2 end fraction end cell row cell negative fraction numerator 1 over denominator 2 end fraction end cell cell fraction numerator square root of 3 over denominator 2 end fraction end cell end table close square brackets, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-

maths-General
General
maths-

Let P be a non-singular matrix 1 + P + P2 +….. + Pn = O(O denotes the null matrix), then P–1 is- 

Let P be a non-singular matrix 1 + P + P2 +….. + Pn = O(O denotes the null matrix), then P–1 is- 

maths-General
parallel
General
maths-

Let A = open square brackets table row cell cos to the power of 2 end exponent invisible function application theta end cell cell sin invisible function application theta cos invisible function application theta end cell row cell cos invisible function application theta sin invisible function application theta end cell cell sin to the power of 2 end exponent invisible function application theta end cell end table close square brackets and B = open square brackets table row cell cos to the power of 2 end exponent invisible function application phi end cell cell sin invisible function application phi cos invisible function application phi end cell row cell cos invisible function application phi sin invisible function application phi end cell cell sin to the power of 2 end exponent invisible function application phi end cell end table close square bracketsthen AB = 0, if- 

Let A = open square brackets table row cell cos to the power of 2 end exponent invisible function application theta end cell cell sin invisible function application theta cos invisible function application theta end cell row cell cos invisible function application theta sin invisible function application theta end cell cell sin to the power of 2 end exponent invisible function application theta end cell end table close square brackets and B = open square brackets table row cell cos to the power of 2 end exponent invisible function application phi end cell cell sin invisible function application phi cos invisible function application phi end cell row cell cos invisible function application phi sin invisible function application phi end cell cell sin to the power of 2 end exponent invisible function application phi end cell end table close square bracketsthen AB = 0, if- 

maths-General
General
chemistry-

Increasing order of strength of oxo-acids of chlorine is:

Increasing order of strength of oxo-acids of chlorine is:

chemistry-General
General
maths-

If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to- 

If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to- 

maths-General
parallel
General
maths-

If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square bracketsand X is a matrix such that A = BX, then X equals-

If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square bracketsand X is a matrix such that A = BX, then X equals-

maths-General
General
maths-

If A is a square matrix such that A2 = A, then |A| equals- 

If A is a square matrix such that A2 = A, then |A| equals- 

maths-General
General
maths-

The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0

The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0

maths-General
parallel
General
maths-

If Ak = 0, for some value of k, (I – A)p = I + A + A2 + …. Ak–1, thus p is (A is nilpotent with index k).

If Ak = 0, for some value of k, (I – A)p = I + A + A2 + …. Ak–1, thus p is (A is nilpotent with index k).

maths-General
General
maths-

If the matrix A = open square brackets table row cell y plus a end cell b c row a cell y plus b end cell c row a b cell y plus c end cell end table close square bracketshas rank 3, then -

If the matrix A = open square brackets table row cell y plus a end cell b c row a cell y plus b end cell c row a b cell y plus c end cell end table close square bracketshas rank 3, then -

maths-General
General
maths-

If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

If A is non-singular matrix of order 3 × 3, then adj (adj A) is equal to -

maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.