Maths-
General
Easy

Question

The entries in a two-by-two determinant open vertical bar table row cell a blank b end cell row cell c blank d end cell end table close vertical bar are integers that are chosen randomly and independently, and, for each entry, the probability that the entry is odd is p. If the probability that the value of the determinant is even is 1/ 2, then the value of p, is

  1. fraction numerator 1 over denominator 3 end fraction    
  2. fraction numerator 1 over denominator 2 end fraction    
  3. fraction numerator 2 over denominator 3 end fraction    
  4. fraction numerator square root of 2 over denominator 2 end fraction    

hintHint:

Whenever an event is the complement of another event, specifically, if A is an event, then P(not A) = 1 - P(A) or P(A') = 1 - P(A).
P(A) + P(A′) = 1.

The correct answer is: fraction numerator square root of 2 over denominator 2 end fraction


     Given  open vertical bar D close vertical bar = open vertical bar table row cell a blank b end cell row cell c blank d end cell end table close vertical bar is  a   two-by-two determinant 
    and , probability that the value of the determinant is even { P (even) } is 1/ 2
    Detailed Solution
    Probability that the value of the determinant is odd  { P (odd) } is space 1 minus space 1 half space equals space 1 half
    N o w comma space open vertical bar D close vertical bar =  ad - bc is odd when ad is odd and bc is even and vice versa
    space P space left parenthesis open vertical bar D close vertical bar space i s space o d d right parenthesis space equals space p to the power of 4 space plus space left parenthesis space 1 space minus space p squared space right parenthesis space left parenthesis space 1 space minus space p squared space right parenthesis space equals fraction numerator space 1 over denominator 2 end fraction

S i m p l i f y i n g

p to the power of 4 space plus space 1 space plus space p to the power of 4 space minus space 2 space p squared space equals fraction numerator space 1 over denominator 2 end fraction

4 space p to the power of 4 space minus space 4 space p squared space plus space 1 space equals space 0

left parenthesis space 2 space p squared space minus space 1 space right parenthesis squared space equals space 0 rightwards double arrow 2 space p to the power of 2 end exponent space minus space 1 space equals space 0 space

rightwards double arrow space p squared space equals space 1 half

rightwards double arrow space p space equals space fraction numerator 1 over denominator square root of 2 end fraction space rightwards double arrow space fraction numerator square root of 2 over denominator 2 end fraction

    Related Questions to study

    General
    Maths-

    Statement-I : Cot to the power of negative 1 end exponent invisible function application open parentheses x close parentheses minus tan to the power of negative 1 end exponent invisible function application open parentheses x close parentheses greater than 0 text  for all  end text x less than 1
    Statement-II : Graph of c o t to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis is always above the graph of t a n to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis text  for all  end text x less than 1 text  . end text

    Statement-I : Cot to the power of negative 1 end exponent invisible function application open parentheses x close parentheses minus tan to the power of negative 1 end exponent invisible function application open parentheses x close parentheses greater than 0 text  for all  end text x less than 1
    Statement-II : Graph of c o t to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis is always above the graph of t a n to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis text  for all  end text x less than 1 text  . end text

    Maths-General
    General
    Maths-

    If c o s to the power of negative 1 end exponent invisible function application x minus c o s to the power of negative 1 end exponent invisible function application fraction numerator y over denominator 2 end fraction equals alpha comma then 4 x to the power of 2 end exponent minus 4 x y c o s invisible function application alpha plus y to the power of 2 end exponent text end textis equal to-

    If c o s to the power of negative 1 end exponent invisible function application x minus c o s to the power of negative 1 end exponent invisible function application fraction numerator y over denominator 2 end fraction equals alpha comma then 4 x to the power of 2 end exponent minus 4 x y c o s invisible function application alpha plus y to the power of 2 end exponent text end textis equal to-

    Maths-General
    General
    Maths-

    The solution of the equation 2 c o s to the power of negative 1 end exponent invisible function application x equals s i n to the power of negative 1 end exponent invisible function application open parentheses 2 x square root of 1 minus x to the power of 2 end exponent end root close parentheses

    The solution of the equation 2 c o s to the power of negative 1 end exponent invisible function application x equals s i n to the power of negative 1 end exponent invisible function application open parentheses 2 x square root of 1 minus x to the power of 2 end exponent end root close parentheses

    Maths-General
    parallel
    General
    Maths-

    The solution of the inequality open parentheses tan to the power of negative 1 end exponent invisible function application x close parentheses to the power of 2 end exponent minus 3 t a n to the power of negative 1 end exponent invisible function application x plus 2 greater or equal than 0 text  is - end text

    The solution of the inequality open parentheses tan to the power of negative 1 end exponent invisible function application x close parentheses to the power of 2 end exponent minus 3 t a n to the power of negative 1 end exponent invisible function application x plus 2 greater or equal than 0 text  is - end text

    Maths-General
    General
    Maths-

    The value of taninvisible function application open square brackets s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 3 over denominator 5 end fraction close parentheses plus t a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 over denominator 3 end fraction close parentheses close square brackets is

    The value of taninvisible function application open square brackets s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 3 over denominator 5 end fraction close parentheses plus t a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 over denominator 3 end fraction close parentheses close square brackets is

    Maths-General
    General
    Maths-

    The image of the interval [- 1, 3] under the mapping specified by the function f left parenthesis x right parenthesis equals 4 x to the power of 3 end exponent minus 12 x text end textis :

    Hence the correct option in  [-8,72]

    The image of the interval [- 1, 3] under the mapping specified by the function f left parenthesis x right parenthesis equals 4 x to the power of 3 end exponent minus 12 x text end textis :

    Maths-General

    Hence the correct option in  [-8,72]

    parallel
    General
    maths-

    Let f(x)equals fraction numerator X over denominator 1 plus x end fraction defined from left parenthesis 0 comma infinity right parenthesis rightwards arrow left square bracket 0 comma infinity right parenthesis, then by f(x) is -

    Let f(x)equals fraction numerator X over denominator 1 plus x end fraction defined from left parenthesis 0 comma infinity right parenthesis rightwards arrow left square bracket 0 comma infinity right parenthesis, then by f(x) is -

    maths-General
    General
    Maths-

    If f : R rightwards arrow R is a function defined by f(x) = [x] c o s invisible function application pi open parentheses fraction numerator 2 x minus 1 over denominator 2 end fraction close parentheses, where [x] denotes the greatest integer function, then f is :

    The correct answer is choice 2

    If f : R rightwards arrow R is a function defined by f(x) = [x] c o s invisible function application pi open parentheses fraction numerator 2 x minus 1 over denominator 2 end fraction close parentheses, where [x] denotes the greatest integer function, then f is :

    Maths-General

    The correct answer is choice 2

    General
    Maths-

    Let ƒ : (–1, 1) rightwards arrow B, be a function defined by ƒ(x) equals t a n to the power of negative 1 end exponent invisible function application fraction numerator 2 x over denominator 1 minus x to the power of 2 end exponent end fraction comma then ƒ is both one-one and onto when B is the interval-

    Hence, the range of the given function is open parentheses negative straight pi over 2 comma straight pi over 2 close parentheses.

    Let ƒ : (–1, 1) rightwards arrow B, be a function defined by ƒ(x) equals t a n to the power of negative 1 end exponent invisible function application fraction numerator 2 x over denominator 1 minus x to the power of 2 end exponent end fraction comma then ƒ is both one-one and onto when B is the interval-

    Maths-General

    Hence, the range of the given function is open parentheses negative straight pi over 2 comma straight pi over 2 close parentheses.

    parallel
    General
    Maths-

    The range of the function f left parenthesis x right parenthesis equals fraction numerator 2 plus x over denominator 2 minus x end fraction comma x not equal to 2 text end textis-

    Hence, range of the given function will be R{1}

    The range of the function f left parenthesis x right parenthesis equals fraction numerator 2 plus x over denominator 2 minus x end fraction comma x not equal to 2 text end textis-

    Maths-General

    Hence, range of the given function will be R{1}

    General
    Maths-

    A function whose graph is symmetrical about the origin is given by -

    Hence, the function f(x+y)=f(x)+f(y) is symmetric about the origin.

    A function whose graph is symmetrical about the origin is given by -

    Maths-General

    Hence, the function f(x+y)=f(x)+f(y) is symmetric about the origin.

    General
    Maths-

    The minimum value of f left parenthesis x right parenthesis equals vertical line 3 minus x vertical line plus vertical line 2 plus x vertical line plus vertical line 5 minus x vertical line is

    The minimum value of f left parenthesis x right parenthesis equals vertical line 3 minus x vertical line plus vertical line 2 plus x vertical line plus vertical line 5 minus x vertical line is

    Maths-General
    parallel
    General
    Maths-

    f colon left square bracket negative 1 , 1 right square bracket rightwards arrow left square bracket negative 1 , 2 right square bracket comma f left parenthesis x right parenthesis equals x plus vertical line x vertical line comma is -

    Hence, the given function is many one and onto.

    f colon left square bracket negative 1 , 1 right square bracket rightwards arrow left square bracket negative 1 , 2 right square bracket comma f left parenthesis x right parenthesis equals x plus vertical line x vertical line comma is -

    Maths-General

    Hence, the given function is many one and onto.

    General
    Maths-

    If f(x) is a polynomial function satisfying the condition f(x). f(1/x) = f(x) + f(1/x) and f(2) = 9 then -

    If f(x) is a polynomial function satisfying the condition f(x). f(1/x) = f(x) + f(1/x) and f(2) = 9 then -

    Maths-General
    General
    General

    Fill in the blank with the appropriate transition.
    The movie managed to fetch decent collections ______ all the negative reviews it received.
     

    Fill in the blank with the appropriate transition.
    The movie managed to fetch decent collections ______ all the negative reviews it received.
     

    GeneralGeneral
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.