Maths-
General
Easy

Question

The polar equation of the circle of radius 5 and touching the initial line at the pole is

  1. r equals 5 s i n space theta    
  2. r equals 10 s i n space theta    
  3. r equals 5 c o s space theta    
  4. r equals 10 c o s space theta    

The correct answer is: r equals 10 s i n space theta


    T h e space p o l a r space e q u a t i o n space o f space t h e space c i r c l e space w i t h space r a d i u s space a equals 5 space a n d space t o u c h i n g space t h e space i n i t i a l space l i n e space a t space t h e space p o l e space i s
r equals 2 a sin theta
r equals 2 open parentheses 5 close parentheses sin theta
r equals 10 sin theta

    Related Questions to study

    General
    maths-

    The circle with centre at and radius 2 is

    The circle with centre at and radius 2 is

    maths-General
    General
    Maths-

    Statement-I : If fraction numerator x squared plus 3 x plus 1 over denominator x squared plus 2 x plus 1 end fraction equals A plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis squared end fraction text  then  end text bold italic A plus bold italic B plus bold italic C equals bold 0
    Statement-II :If fraction numerator x squared plus 2 x plus 3 over denominator x cubed end fraction equals A over x plus B over x squared plus C over x cubed text  then  end text A plus B minus C equals 0

    Which of the above statements is true

    Statement-I : If fraction numerator x squared plus 3 x plus 1 over denominator x squared plus 2 x plus 1 end fraction equals A plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis squared end fraction text  then  end text bold italic A plus bold italic B plus bold italic C equals bold 0
    Statement-II :If fraction numerator x squared plus 2 x plus 3 over denominator x cubed end fraction equals A over x plus B over x squared plus C over x cubed text  then  end text A plus B minus C equals 0

    Which of the above statements is true

    Maths-General
    General
    Maths-

    If x, y are rational number such that x plus y plus left parenthesis x minus 2 y right parenthesis square root of 2 equals 2 x minus y plus left parenthesis x minus y minus 1 right parenthesis square root of 6 Then

    If x, y are rational number such that x plus y plus left parenthesis x minus 2 y right parenthesis square root of 2 equals 2 x minus y plus left parenthesis x minus y minus 1 right parenthesis square root of 6 Then

    Maths-General
    parallel
    General
    maths-

    A class contains 4 boys and g girls. Every Sunday five students, including at least three boys go for a picnic to Appu Ghar, a different group being sent every week. During, the picnic, the class teacher gives each girl in the group a doll. If the total number of dolls distributed was 85, then value of g is -

    A class contains 4 boys and g girls. Every Sunday five students, including at least three boys go for a picnic to Appu Ghar, a different group being sent every week. During, the picnic, the class teacher gives each girl in the group a doll. If the total number of dolls distributed was 85, then value of g is -

    maths-General
    General
    maths-

    There are three piles of identical yellow, black and green balls and each pile contains at least 20 balls. The number of ways of selecting 20 balls if the number of black balls to be selected is twice the number of yellow balls, is -

    There are three piles of identical yellow, black and green balls and each pile contains at least 20 balls. The number of ways of selecting 20 balls if the number of black balls to be selected is twice the number of yellow balls, is -

    maths-General
    General
    maths-

    If a, b, c are the three natural numbers such that a + b + c is divisible by 6, then a3 + b3 + c3 must be divisible by -

    If a, b, c are the three natural numbers such that a + b + c is divisible by 6, then a3 + b3 + c3 must be divisible by -

    maths-General
    parallel
    General
    maths-

    For x element of R, let [x] denote the greatest integer less or equal than x, then value ofopen square brackets negative fraction numerator 1 over denominator 3 end fraction close square brackets+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 1 over denominator 100 end fraction close square brackets+ open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 2 over denominator 100 end fraction close square brackets+…+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 99 over denominator 100 end fraction close square bracketsis -

    For x element of R, let [x] denote the greatest integer less or equal than x, then value ofopen square brackets negative fraction numerator 1 over denominator 3 end fraction close square brackets+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 1 over denominator 100 end fraction close square brackets+ open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 2 over denominator 100 end fraction close square brackets+…+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 99 over denominator 100 end fraction close square bracketsis -

    maths-General
    General
    maths-

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    maths-General
    General
    maths-

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    maths-General
    parallel
    General
    maths-

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    maths-General
    General
    maths-

    The number of non negative integral solutions of equation 3x + y + z = 24

    The number of non negative integral solutions of equation 3x + y + z = 24

    maths-General
    General
    maths-

    Sum of divisors of 25 ·37 ·53 · 72 is –

    Sum of divisors of 25 ·37 ·53 · 72 is –

    maths-General
    parallel
    General
    maths-

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    maths-General
    General
    maths-

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    maths-General
    General
    Maths-

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Maths-General

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.