Physics-
General
Easy

Question

A cylindrical solid of length L and radius a is having varying resistivity given by r = r0 x where r0 is a positive constant and x is measured from left end of solid. The cell shown in the figure is having emf V and negligible internal resistance. The electric field as a function of x is best described by :

  1. fraction numerator 2 V over denominator L to the power of 2 end exponent end fraction cross times x    
  2. fraction numerator 2 V over denominator rho subscript 0 end subscript L to the power of 2 end exponent end fraction cross times x    
  3. fraction numerator V over denominator L to the power of 2 end exponent end fraction cross times x    
  4. None of these    

The correct answer is: fraction numerator 2 V over denominator L to the power of 2 end exponent end fraction cross times x


    Consider an elemental part of solid at a distance x from left end of width dx. Resistance of this elemental part is

    Related Questions to study

    General
    physics-

    A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

    A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

    physics-General
    General
    maths-

    if ell parallel to mfind the value of x in given figure.

    if ell parallel to mfind the value of x in given figure.

    maths-General
    General
    maths-

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    maths-General
    parallel
    General
    maths-

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    maths-General
    General
    maths-

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    maths-General
    General
    maths-

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    maths-General
    parallel
    General
    maths-

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    maths-General
    General
    maths-

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    maths-General
    General
    maths-

    If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

    If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

    maths-General
    parallel
    General
    maths-

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    maths-General
    General
    maths-

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    maths-General
    General
    maths-

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    maths-General
    parallel
    General
    maths-

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    maths-General
    General
    maths-

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    maths-General
    General
    maths-

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.