Physics-
General
Easy

Question

Ball 1 collides with another identical ball 2 at rest as shown in figure. For what value of coefficient of restitution e, the velocity of second ball becomes two times that of 1 after collision

  1. 1/3    
  2. 1 divided by 2    
  3. 1 divided by 4    
  4. 1/6    

The correct answer is: 1/3

Related Questions to study

General
physics-

A bullet of mass 20 g travelling horizontally with a speed of 500 m/s passes through a wooden block of mass 10.0 kg initially at rest on a surface. The bullet emerges with a speed of 100 m/s and the block slides 20 cm on the surface before coming to rest, the coefficient of friction between the block and the surface. g=10m/s2

A bullet of mass 20 g travelling horizontally with a speed of 500 m/s passes through a wooden block of mass 10.0 kg initially at rest on a surface. The bullet emerges with a speed of 100 m/s and the block slides 20 cm on the surface before coming to rest, the coefficient of friction between the block and the surface. g=10m/s2

physics-General
General
maths-

Let f : R → R be a function defined by f(x) = ecosx-e-sinxesinx+e-sinx, then

Let f : R → R be a function defined by f(x) = ecosx-e-sinxesinx+e-sinx, then

maths-General
General
physics-

The variation of potential energy of harmonic oscillator is as shown in figure. The spring constant is

The variation of potential energy of harmonic oscillator is as shown in figure. The spring constant is

physics-General
parallel
General
physics-

As shown in figure, a simple harmonic motion oscillator having identical four springs has time period

As shown in figure, a simple harmonic motion oscillator having identical four springs has time period

physics-General
General
physics-

A man having a wrist watch and a pendulum clock rises on a T Vtower. The wrist watch and pendulum clock by chance fall from the top of the tower. Then

A man having a wrist watch and a pendulum clock rises on a T Vtower. The wrist watch and pendulum clock by chance fall from the top of the tower. Then

physics-General
General
physics-

A metal rod of length L and mass m is pivoted at one end. A thin disk of mass M and radius R left parenthesis less than L right parenthesis is attached at its centre to the free end of the rod. Consider two ways the disc is attached case A- the disc is not free to rotate about its centre and case B – the disc is free to rotate about its centre. The rod-disc system performs SHM in vertical plane after being released from the same displaced position. Which of the following statement(s) is/are true?

A metal rod of length L and mass m is pivoted at one end. A thin disk of mass M and radius R left parenthesis less than L right parenthesis is attached at its centre to the free end of the rod. Consider two ways the disc is attached case A- the disc is not free to rotate about its centre and case B – the disc is free to rotate about its centre. The rod-disc system performs SHM in vertical plane after being released from the same displaced position. Which of the following statement(s) is/are true?

physics-General
parallel
General
maths-

Let f: R → R be a function defined by f(x) = –fraction numerator vertical line x vertical line to the power of 3 end exponent plus vertical line x vertical line over denominator 1 plus x to the power of 2 end exponent end fraction, then the graph of f(x) lies in the –

Let f: R → R be a function defined by f(x) = –fraction numerator vertical line x vertical line to the power of 3 end exponent plus vertical line x vertical line over denominator 1 plus x to the power of 2 end exponent end fraction, then the graph of f(x) lies in the –

maths-General
General
physics-

Two identical balls A and B each of mass 0.1 blank k g are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 blank m. Each spring has a natural length of 0.06 pi blank m and force constant 0.1 N divided by m. Initially both the balls are displaced by an angle theta equals pi divided by 6 radian with respect to the diameter P Q of the circle and released from rest. The frequency of oscillation of the ball B is

Two identical balls A and B each of mass 0.1 blank k g are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 blank m. Each spring has a natural length of 0.06 pi blank m and force constant 0.1 N divided by m. Initially both the balls are displaced by an angle theta equals pi divided by 6 radian with respect to the diameter P Q of the circle and released from rest. The frequency of oscillation of the ball B is

physics-General
General
physics-

A ball of mass open parentheses m close parentheses 0.5 blank k g is attached to the end of a string having length open parentheses L close parentheses 0.5 blank m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 blank N. The maximum possible value of angular velocity of ball (in radian/s) is

A ball of mass open parentheses m close parentheses 0.5 blank k g is attached to the end of a string having length open parentheses L close parentheses 0.5 blank m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 blank N. The maximum possible value of angular velocity of ball (in radian/s) is

physics-General
parallel
General
physics-

Two blocks each of mass m equals 2 k g placed on rough horizontal surface connected by massless string as shown in the figure and variable horizontal force F equals t N (which t is time) applied then the tension T in string versus time graph is

Two blocks each of mass m equals 2 k g placed on rough horizontal surface connected by massless string as shown in the figure and variable horizontal force F equals t N (which t is time) applied then the tension T in string versus time graph is

physics-General
General
physics-

A point moves along the arc of a circle of radius R. Its speed varies as v equals a square root of s comma where a is constant and s is the arc length travelled by the particle. The angle alpha between the vector of total acceleration and the vector of velocity is given by

A point moves along the arc of a circle of radius R. Its speed varies as v equals a square root of s comma where a is constant and s is the arc length travelled by the particle. The angle alpha between the vector of total acceleration and the vector of velocity is given by

physics-General
General
physics-

Consider the situation shown in figure. The horizontal surface below the bigger block is smooth. The coefficient of friction between the blocks is mu. Find the minimum force F that can be applied in order to keep the smaller blocks at rest with respect to the bigger block.

Consider the situation shown in figure. The horizontal surface below the bigger block is smooth. The coefficient of friction between the blocks is mu. Find the minimum force F that can be applied in order to keep the smaller blocks at rest with respect to the bigger block.

physics-General
parallel
General
physics-

A block of mass m is placed on a wedge of mass 2m which rests on a rough horizontal surface. There is no friction between the block and the wedge. The minimum coefficient of friction between the wedge and the ground so that the wedge does not move is

A block of mass m is placed on a wedge of mass 2m which rests on a rough horizontal surface. There is no friction between the block and the wedge. The minimum coefficient of friction between the wedge and the ground so that the wedge does not move is

physics-General
General
physics-

Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in the diagram. The coefficient of A with the table is 0.20. The minimum mass of C that may be placed on A to prevent it form moving is equal to

Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in the diagram. The coefficient of A with the table is 0.20. The minimum mass of C that may be placed on A to prevent it form moving is equal to

physics-General
General
physics-

Two blocks A and B of masses 6 kg and 3 kg rest on a smooth horizontal surface as shown in figure. The coefficient of friction between A and B is 0.4. The maximum horizontal force, which is applied on block A to avoid relative between A and B, is open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

Two blocks A and B of masses 6 kg and 3 kg rest on a smooth horizontal surface as shown in figure. The coefficient of friction between A and B is 0.4. The maximum horizontal force, which is applied on block A to avoid relative between A and B, is open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.