Physics-
General
Easy

Question

The variation of potential energy of harmonic oscillator is as shown in figure. The spring constant is

  1. 1 cross times 10 to the power of 2 end exponent N divided by m    
  2. 150 blank N divided by m    
  3. 0.667 cross times 10 to the power of 2 end exponent N divided by m    
  4. 3 cross times 10 to the power of 2 end exponent N divided by m    

The correct answer is: 150 blank N divided by m


    Total potential energy equals 0.04 blank J
    Resting potential energy equals 0.01 blank J
    Maximum kinetic energy equals left parenthesis 0.04 minus 0.01 right parenthesis
    equals 0.03 J equals fraction numerator 1 over denominator 2 end fraction m blank omega to the power of 2 end exponent a to the power of 2 end exponent equals fraction numerator 1 over denominator 2 end fraction k a to the power of 2 end exponent
    0.03 equals fraction numerator 1 over denominator 2 end fraction cross times k cross times open parentheses fraction numerator 20 over denominator 1000 end fraction close parentheses to the power of 2 end exponent
    k equals 0.06 cross times 2500 blank N divided by m equals 150 blank N divided by m

    Related Questions to study

    General
    physics-

    As shown in figure, a simple harmonic motion oscillator having identical four springs has time period

    As shown in figure, a simple harmonic motion oscillator having identical four springs has time period

    physics-General
    General
    physics-

    A man having a wrist watch and a pendulum clock rises on a T Vtower. The wrist watch and pendulum clock by chance fall from the top of the tower. Then

    A man having a wrist watch and a pendulum clock rises on a T Vtower. The wrist watch and pendulum clock by chance fall from the top of the tower. Then

    physics-General
    General
    physics-

    A metal rod of length L and mass m is pivoted at one end. A thin disk of mass M and radius R left parenthesis less than L right parenthesis is attached at its centre to the free end of the rod. Consider two ways the disc is attached case A- the disc is not free to rotate about its centre and case B – the disc is free to rotate about its centre. The rod-disc system performs SHM in vertical plane after being released from the same displaced position. Which of the following statement(s) is/are true?

    A metal rod of length L and mass m is pivoted at one end. A thin disk of mass M and radius R left parenthesis less than L right parenthesis is attached at its centre to the free end of the rod. Consider two ways the disc is attached case A- the disc is not free to rotate about its centre and case B – the disc is free to rotate about its centre. The rod-disc system performs SHM in vertical plane after being released from the same displaced position. Which of the following statement(s) is/are true?

    physics-General
    parallel
    General
    maths-

    Let f: R → R be a function defined by f(x) = –fraction numerator vertical line x vertical line to the power of 3 end exponent plus vertical line x vertical line over denominator 1 plus x to the power of 2 end exponent end fraction, then the graph of f(x) lies in the –

    Let f: R → R be a function defined by f(x) = –fraction numerator vertical line x vertical line to the power of 3 end exponent plus vertical line x vertical line over denominator 1 plus x to the power of 2 end exponent end fraction, then the graph of f(x) lies in the –

    maths-General
    General
    physics-

    Two identical balls A and B each of mass 0.1 blank k g are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 blank m. Each spring has a natural length of 0.06 pi blank m and force constant 0.1 N divided by m. Initially both the balls are displaced by an angle theta equals pi divided by 6 radian with respect to the diameter P Q of the circle and released from rest. The frequency of oscillation of the ball B is

    Two identical balls A and B each of mass 0.1 blank k g are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 blank m. Each spring has a natural length of 0.06 pi blank m and force constant 0.1 N divided by m. Initially both the balls are displaced by an angle theta equals pi divided by 6 radian with respect to the diameter P Q of the circle and released from rest. The frequency of oscillation of the ball B is

    physics-General
    General
    physics-

    A ball of mass open parentheses m close parentheses 0.5 blank k g is attached to the end of a string having length open parentheses L close parentheses 0.5 blank m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 blank N. The maximum possible value of angular velocity of ball (in radian/s) is

    A ball of mass open parentheses m close parentheses 0.5 blank k g is attached to the end of a string having length open parentheses L close parentheses 0.5 blank m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 blank N. The maximum possible value of angular velocity of ball (in radian/s) is

    physics-General
    parallel
    General
    physics-

    Two blocks each of mass m equals 2 k g placed on rough horizontal surface connected by massless string as shown in the figure and variable horizontal force F equals t N (which t is time) applied then the tension T in string versus time graph is

    Two blocks each of mass m equals 2 k g placed on rough horizontal surface connected by massless string as shown in the figure and variable horizontal force F equals t N (which t is time) applied then the tension T in string versus time graph is

    physics-General
    General
    physics-

    A point moves along the arc of a circle of radius R. Its speed varies as v equals a square root of s comma where a is constant and s is the arc length travelled by the particle. The angle alpha between the vector of total acceleration and the vector of velocity is given by

    A point moves along the arc of a circle of radius R. Its speed varies as v equals a square root of s comma where a is constant and s is the arc length travelled by the particle. The angle alpha between the vector of total acceleration and the vector of velocity is given by

    physics-General
    General
    physics-

    Consider the situation shown in figure. The horizontal surface below the bigger block is smooth. The coefficient of friction between the blocks is mu. Find the minimum force F that can be applied in order to keep the smaller blocks at rest with respect to the bigger block.

    Consider the situation shown in figure. The horizontal surface below the bigger block is smooth. The coefficient of friction between the blocks is mu. Find the minimum force F that can be applied in order to keep the smaller blocks at rest with respect to the bigger block.

    physics-General
    parallel
    General
    physics-

    A block of mass m is placed on a wedge of mass 2m which rests on a rough horizontal surface. There is no friction between the block and the wedge. The minimum coefficient of friction between the wedge and the ground so that the wedge does not move is

    A block of mass m is placed on a wedge of mass 2m which rests on a rough horizontal surface. There is no friction between the block and the wedge. The minimum coefficient of friction between the wedge and the ground so that the wedge does not move is

    physics-General
    General
    physics-

    Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in the diagram. The coefficient of A with the table is 0.20. The minimum mass of C that may be placed on A to prevent it form moving is equal to

    Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in the diagram. The coefficient of A with the table is 0.20. The minimum mass of C that may be placed on A to prevent it form moving is equal to

    physics-General
    General
    physics-

    Two blocks A and B of masses 6 kg and 3 kg rest on a smooth horizontal surface as shown in figure. The coefficient of friction between A and B is 0.4. The maximum horizontal force, which is applied on block A to avoid relative between A and B, is open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

    Two blocks A and B of masses 6 kg and 3 kg rest on a smooth horizontal surface as shown in figure. The coefficient of friction between A and B is 0.4. The maximum horizontal force, which is applied on block A to avoid relative between A and B, is open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

    physics-General
    parallel
    General
    physics-

    Two blocks of masses m subscript 1 end subscript and m subscript 2 end subscript are placed in contact with each other on a horizontal platform. Coefficient of friction between the platform and the blocks are same. The platform moves with some acceleration. The force of interaction between the blocks is

    Two blocks of masses m subscript 1 end subscript and m subscript 2 end subscript are placed in contact with each other on a horizontal platform. Coefficient of friction between the platform and the blocks are same. The platform moves with some acceleration. The force of interaction between the blocks is

    physics-General
    General
    physics-

    Two blocks A and B placed over an inclined plane of inclination alpha have masses m and M. The coefficients of friction between bodies and plane are respectively mu subscript 1 end subscript and mu subscript 2 end subscript. Find the minimum value of alpha at which the blocks start moving if mu subscript 1 end subscript greater than mu subscript 2 end subscript.

    Two blocks A and B placed over an inclined plane of inclination alpha have masses m and M. The coefficients of friction between bodies and plane are respectively mu subscript 1 end subscript and mu subscript 2 end subscript. Find the minimum value of alpha at which the blocks start moving if mu subscript 1 end subscript greater than mu subscript 2 end subscript.

    physics-General
    General
    physics-

    The system is pushed by a force F as shown in figure. All surfaces are smooth except between B and C. Friction coefficient between B and C is mu. Minimum value of F to prevent block B from downward slipping is

    The system is pushed by a force F as shown in figure. All surfaces are smooth except between B and C. Friction coefficient between B and C is mu. Minimum value of F to prevent block B from downward slipping is

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.