Question
Segments OA and OB are radii of the semicircle above. Arc AB has length 3π and OA = 5. What is the value of x ?
Hint:
Hint:
We are given the radius of the circle and an arc length. We need to find the angle subtended by the arc on the centre O.
The formula to be used is
where, = arc length (in radians); r = radius; =angle (in radians)
If is in degree, we use the formula
We need to input the given values of s and r in the above formula and find the value of .
The correct answer is: 108
Let s denote the length of the arc AB
Let r denote the radius OA of the circle.
Let denote the angle subtended by the arc AB on the centre,
Given,
To find: the value of x in degrees
We know,
To calculate the value of x , we keep x on one side of the equation and take all the other quantities on the other side,
Now, we use the given values in the above equation
By simplifying, we get
Thus, the angle subtended at the centre is given by
The correct answer is 108.
A semicircle is formed when a lining passing through the center touches the circle's two ends. As a result of joining two semicircles, we get a circular shape.
A circle is a collection of points equidistant from the circle's center. A radius is a common distance between the center of a circle and its point.
¶Area of a semicircle = 1/2 (π r2)
where r is the radius.
The value is 3.14 or 22/7.
¶Semi circle Formula
¶
Area | ¶(πr2)/2 | ¶
Perimeter (Circumference) | ¶(½)πd + d; when diameter (d) is known πr + 2r | ¶
Angle in a semicircle | ¶¶90 degrees, i.e., right angle ¶ | ¶
Central angle | ¶180 degrees | ¶
Related Questions to study
𝐴𝐵 → 𝐶𝐷 is a rotation. Which of the following statements is true?
𝐴𝐵 → 𝐶𝐷 is a rotation. Which of the following statements is true?
In the figure, ABCD is a trapezium with . Find the area of trapezium if
In the figure, ABCD is a trapezium with . Find the area of trapezium if
In △ ABC and △ DEF , ∠A ≅ ∠D, ∠B ≅ ∠E , then ∠C ≅ ?
In △ ABC and △ DEF , ∠A ≅ ∠D, ∠B ≅ ∠E , then ∠C ≅ ?
The table above shows two pairs of values for the linear function f. The function can be written in the form , where a and b are constants. What is the value of a + b ?
Note:
We can take a different approach to solving the linear equations. The above method is called method of elimination. We may also use the method of substitution; which is finding the values one variable, say a , in terms of b , from the first equation and replacing this value in the second equation to get a linear equation in one variable , b . Then solve it to find b, and use it in the previous equation to find a.
The table above shows two pairs of values for the linear function f. The function can be written in the form , where a and b are constants. What is the value of a + b ?
Note:
We can take a different approach to solving the linear equations. The above method is called method of elimination. We may also use the method of substitution; which is finding the values one variable, say a , in terms of b , from the first equation and replacing this value in the second equation to get a linear equation in one variable , b . Then solve it to find b, and use it in the previous equation to find a.
Find the value of x.
Find the value of x.
The lengths of two adjacent sides of a parallelogram are respectively 51cm and 37cm. If one of its diagonal is 20cm then find the area of the parallelogram.
The lengths of two adjacent sides of a parallelogram are respectively 51cm and 37cm. If one of its diagonal is 20cm then find the area of the parallelogram.
Find the area of the shaded region. Here ABC is an equilateral triangle of side 14cm and BDC is a semicircle.
Find the area of the shaded region. Here ABC is an equilateral triangle of side 14cm and BDC is a semicircle.
If △ BCD = △ OPQ, △ OPQ ≅ △ TUV , then what is the relation between △ BCD and △
TUV ?
If △ BCD = △ OPQ, △ OPQ ≅ △ TUV , then what is the relation between △ BCD and △
TUV ?
In the complex number system, what is the value of ? (Note:
Note:
It is advised to memorize the values of powers of i , that is ,
We can observe that for all natural number . Also, even powers of is always a real number n, either 1 or - 1
In the complex number system, what is the value of ? (Note:
Note:
It is advised to memorize the values of powers of i , that is ,
We can observe that for all natural number . Also, even powers of is always a real number n, either 1 or - 1