Maths-
General
Easy

Question

4 s i n space 27 to the power of 0 equals

  1. square root of 5 plus square root of 5 end root plus square root of 3 minus square root of 5 end root
  2. square root of 5 minus square root of 5 end root plus square root of 3 plus square root of 5 end root
  3. square root of 5 plus square root of 5 end root minus square root of 3 minus square root of 5 end root
  4. square root of 5 plus square root of 5 end root plus square root of 3 plus square root of 5 end root

The correct answer is: square root of 5 plus square root of 5 end root minus square root of 3 minus square root of 5 end root


    Step by step solution:
    open parentheses sin space 27 degree plus cos space 27 degree close parentheses squared equalssin squared 27 degree plus cos squared 27 degreeplus 2 sin 27 degree cos 27 degree
    equals 1 plus sin 54 degree          open square brackets 2 sin x space cos x equals sin 2 x close square brackets
    equals 1 plus fraction numerator square root of 5 plus 1 over denominator 4 end fraction       left square bracket w e space k n o w space t h a tspace sin 54 degree equals fraction numerator square root of 5 plus 1 over denominator 4 end fraction right square bracket
    equals 1 fourth open parentheses square root of 5 plus 5 close parentheses
    open parentheses sin space 27 degree plus cos space 27 degree close parentheses equalsequals 1 half square root of 5 plus square root of 5 end root    -(i)
    open parentheses sin space 27 degree minus cos space 27 degree close parentheses squared equalssin squared 27 degree plus cos squared 27 degreenegative 2 sin 27 degree cos 27 degree
    equals 1 minus sin 54 degree          open square brackets 2 sin x space cos x equals sin 2 x close square brackets
    equals 1 minus fraction numerator square root of 5 plus 1 over denominator 4 end fraction       left square bracket w e space k n o w space t h a tspace sin 54 degree equals fraction numerator square root of 5 plus 1 over denominator 4 end fraction right square bracket
    equals 1 fourth open parentheses 3 minus square root of 5 close parentheses
    open parentheses sin space 27 degree minus cos space 27 degree close parentheses to the power of blank equalsequals 1 half square root of 3 minus square root of 5 end root        -(ii)
    adding equation(i) and (ii) we get,
    2 sin space 27 degree space equals space 1 half[open parentheses square root of 5 plus square root of 5 end root close parenthesesplus open parentheses square root of 3 minus square root of 5 end root close parentheses]
    therefore, 4 space sin space 27 degree space equalsspace open parentheses square root of 5 plus square root of 5 end root close parenthesesplus open parentheses square root of 3 minus square root of 5 end root close parentheses
    Hence, option(c) is the correct option.

    Related Questions to study

    General
    Maths-

    if A equals 340 to the power of ring operator then square root of 1 minus sin space A end root minus square root of 1 plus sin space A end root equals

    if A equals 340 to the power of ring operator then square root of 1 minus sin space A end root minus square root of 1 plus sin space A end root equals

    Maths-General
    General
    Maths-

    2 sin space A over 2 equals square root of 1 plus sin space A end root minus square root of 1 minus sin space A end root text  then  end text

    2 sin space A over 2 equals square root of 1 plus sin space A end root minus square root of 1 minus sin space A end root text  then  end text

    Maths-General
    General
    Maths-

    I f space 2 cos space A divided by 2 equals √ left parenthesis 1 plus sin space A right parenthesis plus √ left parenthesis 1 minus sin space A right parenthesis comma space t h e n space A divided by 2 space l i e s space b e t w e e n

    I f space 2 cos space A divided by 2 equals √ left parenthesis 1 plus sin space A right parenthesis plus √ left parenthesis 1 minus sin space A right parenthesis comma space t h e n space A divided by 2 space l i e s space b e t w e e n

    Maths-General
    parallel
    General
    Maths-

    I f space 2 sin space A divided by 2 equals √ left parenthesis 1 plus sin space A right parenthesis plus √ left parenthesis 1 minus sin space A right parenthesis comma space t h e n space A divided by 2 space l i e s space b e t w e e n

    I f space 2 sin space A divided by 2 equals √ left parenthesis 1 plus sin space A right parenthesis plus √ left parenthesis 1 minus sin space A right parenthesis comma space t h e n space A divided by 2 space l i e s space b e t w e e n

    Maths-General
    General
    Maths-

    If 2 cos space A over 2 equals square root of 1 plus sin space A end root minus square root of 1 minus sin space A end root, then

    If 2 cos space A over 2 equals square root of 1 plus sin space A end root minus square root of 1 minus sin space A end root, then

    Maths-General
    General
    Maths-

    Let omega= – fraction numerator 1 over denominator 2 end fraction plus i fraction numerator square root of 3 over denominator 2 end fraction. Then the value of the determinant open vertical bar table row 1 1 1 row 1 cell negative 1 minus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row 1 cell omega to the power of 2 end exponent end cell cell omega to the power of 4 end exponent end cell end table close vertical baris

    Let omega= – fraction numerator 1 over denominator 2 end fraction plus i fraction numerator square root of 3 over denominator 2 end fraction. Then the value of the determinant open vertical bar table row 1 1 1 row 1 cell negative 1 minus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row 1 cell omega to the power of 2 end exponent end cell cell omega to the power of 4 end exponent end cell end table close vertical baris

    Maths-General
    parallel
    General
    Maths-

    If omega (not equal to 1) is a cube root of unity, then open vertical bar table row 1 cell 1 plus i plus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row cell 1 minus i end cell cell negative 1 end cell cell omega to the power of 2 end exponent minus 1 end cell row cell negative i end cell cell negative i plus omega minus 1 end cell cell negative 1 end cell end table close vertical barequals

    If omega (not equal to 1) is a cube root of unity, then open vertical bar table row 1 cell 1 plus i plus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row cell 1 minus i end cell cell negative 1 end cell cell omega to the power of 2 end exponent minus 1 end cell row cell negative i end cell cell negative i plus omega minus 1 end cell cell negative 1 end cell end table close vertical barequals

    Maths-General
    General
    Maths-

    Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.

    Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.

    Maths-General
    General
    Maths-

    The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -

    The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -

    Maths-General
    parallel
    General
    Maths-

    Ifopen vertical bar table row cell 1 plus x end cell x cell x to the power of 2 end exponent end cell row x cell 1 plus x end cell cell x to the power of 2 end exponent end cell row cell x to the power of 2 end exponent end cell x cell 1 plus x end cell end table close vertical bar= ax5 + bx4 + cx3 + dx2 + lambda x + mu be an identity in x, where a, b, c, d, lambda, mu are independent of x. Then the value of lambda is

    Ifopen vertical bar table row cell 1 plus x end cell x cell x to the power of 2 end exponent end cell row x cell 1 plus x end cell cell x to the power of 2 end exponent end cell row cell x to the power of 2 end exponent end cell x cell 1 plus x end cell end table close vertical bar= ax5 + bx4 + cx3 + dx2 + lambda x + mu be an identity in x, where a, b, c, d, lambda, mu are independent of x. Then the value of lambda is

    Maths-General
    General
    Maths-

    If the following equations x + y – 3 = 0(1 + lambda) x + (2 + lambda) y – 8 = 0x – (1 + lambda) y + (2 + lambda) = 0 are consistent then the value of lambdais

    If the following equations x + y – 3 = 0(1 + lambda) x + (2 + lambda) y – 8 = 0x – (1 + lambda) y + (2 + lambda) = 0 are consistent then the value of lambdais

    Maths-General
    General
    Maths-

    If alpha comma beta comma gamma are the roots of x3 – 3x + 2 = 0, then the value of the determinant open vertical bar table row alpha beta gamma row beta gamma alpha row gamma alpha beta end table close vertical bar is equal to

    If alpha comma beta comma gamma are the roots of x3 – 3x + 2 = 0, then the value of the determinant open vertical bar table row alpha beta gamma row beta gamma alpha row gamma alpha beta end table close vertical bar is equal to

    Maths-General
    parallel
    General
    Maths-

    If straight capital deltaABC is a scalene triangle, then the value of open vertical bar table row cell sin invisible function application A end cell cell sin invisible function application B end cell cell sin invisible function application C end cell row cell cos invisible function application A end cell cell cos invisible function application B end cell cell cos invisible function application C end cell row 1 1 1 end table close vertical baris

    If straight capital deltaABC is a scalene triangle, then the value of open vertical bar table row cell sin invisible function application A end cell cell sin invisible function application B end cell cell sin invisible function application C end cell row cell cos invisible function application A end cell cell cos invisible function application B end cell cell cos invisible function application C end cell row 1 1 1 end table close vertical baris

    Maths-General
    General
    Maths-

    Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
    STATEMENT-1: The system of equations has no solution for k not equal to3
    STATEMENT-2: The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to0, for k not equal to3 

    Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
    STATEMENT-1: The system of equations has no solution for k not equal to3
    STATEMENT-2: The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to0, for k not equal to3 

    Maths-General
    General
    Maths-

    Suppose, x > 0, y > 0, z > 0 and capital delta (a, b, c) = open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar
    Statement - 1 :capital delta (8, 27, 125) = 0
    Statement - 2 :capital delta open parentheses fraction numerator 1 over denominator 2 end fraction comma fraction numerator 1 over denominator 3 end fraction comma fraction numerator 1 over denominator 5 end fraction close parentheses = 0

    Suppose, x > 0, y > 0, z > 0 and capital delta (a, b, c) = open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar
    Statement - 1 :capital delta (8, 27, 125) = 0
    Statement - 2 :capital delta open parentheses fraction numerator 1 over denominator 2 end fraction comma fraction numerator 1 over denominator 3 end fraction comma fraction numerator 1 over denominator 5 end fraction close parentheses = 0

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.