Maths-
General
Easy
Question
if
then ![square root of 1 minus sin space A end root minus square root of 1 plus sin space A end root equals]()
The correct answer is: ![2 sin space A divided by 2]()
Step by step solution:
![square root of 1 minus sin space A end root]()
![negative square root of 1 plus sin space A end root equals]()
![square root of sin squared A over 2 plus cos squared A over 2 minus 2 sin A over 2 cos A over 2 end root]()
![negative square root of sin squared A over 2 plus cos squared A over 2 plus 2 sin A over 2 cos A over 2 end root]()
![equals square root of open parentheses sin A over 2 minus cos A over 2 close parentheses squared end root]()
![negative square root of open parentheses sin A over 2 plus cos A over 2 close parentheses squared end root]()
![equals open vertical bar sin A over 2 minus cos A over 2 close vertical bar]()
![negative open vertical bar sin A over 2 plus cos A over 2 close vertical bar]()
![equals open vertical bar sin space 170 degree minus cos space 170 degree close vertical bar]()
![negative open vertical bar sin space 170 degree plus cos space 170 degree close vertical bar]()
![equals open vertical bar negative sin 10 degree minus cos 10 degree close vertical bar]()
![negative open vertical bar sin 10 degree minus cos 10 degree close vertical bar]()
![equals sin space 10 degree space plus space cos space 10 degree]()
![plus sin space 10 degree minus space cos space 10 degree]()
![equals space 2 space sin space 170 degree]()
![equals space 2 space sin space 340 over 2 to the power of degree]()
![equals space 2 space sin space A over 2]()
Hence, option(a) is the correct option.
Related Questions to study
Maths-
Maths-General
Maths-
Maths-General
Maths-
Maths-General
Maths-
If
, then
If
, then
Maths-General
Maths-
Let
= –
. Then the value of the determinant
is
Let
= –
. Then the value of the determinant
is
Maths-General
Maths-
If
(
1) is a cube root of unity, then
equals
If
(
1) is a cube root of unity, then
equals
Maths-General
Maths-
Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.
Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.
Maths-General
Maths-
The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -
The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -
Maths-General
Maths-
If
= ax5 + bx4 + cx3 + dx2 +
x +
be an identity in x, where a, b, c, d,
,
are independent of x. Then the value of
is
If
= ax5 + bx4 + cx3 + dx2 +
x +
be an identity in x, where a, b, c, d,
,
are independent of x. Then the value of
is
Maths-General
Maths-
If the following equations x + y – 3 = 0(1 +
) x + (2 +
) y – 8 = 0x – (1 +
) y + (2 +
) = 0 are consistent then the value of
is
If the following equations x + y – 3 = 0(1 +
) x + (2 +
) y – 8 = 0x – (1 +
) y + (2 +
) = 0 are consistent then the value of
is
Maths-General
Maths-
If
are the roots of x3 – 3x + 2 = 0, then the value of the determinant
is equal to
If
are the roots of x3 – 3x + 2 = 0, then the value of the determinant
is equal to
Maths-General
Maths-
If
ABC is a scalene triangle, then the value of
is
If
ABC is a scalene triangle, then the value of
is
Maths-General
Maths-
Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
STATEMENT-1: The system of equations has no solution for k
3
STATEMENT-2: The determinant ![open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical bar]()
0, for k
3
Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
STATEMENT-1: The system of equations has no solution for k
3
STATEMENT-2: The determinant ![open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical bar]()
0, for k
3
Maths-General
Maths-
Suppose, x > 0, y > 0, z > 0 and
(a, b, c) = ![open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar]()
Statement - 1 :
(8, 27, 125) = 0
Statement - 2 :
= 0
Suppose, x > 0, y > 0, z > 0 and
(a, b, c) = ![open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar]()
Statement - 1 :
(8, 27, 125) = 0
Statement - 2 :
= 0
Maths-General
Maths-
If
and
then y=
If
and
then y=
Maths-General