Chemistry-
General
Easy

Question

Identify the product (Y) in the following reaction sequence:

  1. cyclobutane    
  2. cyclopentane    
  3. pentane    
  4. cyclopentanone    

The correct answer is: cyclopentane

Related Questions to study

General
Maths-

The radius of the circle passing through the centre or the in-circle of triangle A B Cand through the end points of BC is given by

The radius of the circle passing through the centre or the in-circle of triangle A B Cand through the end points of BC is given by

Maths-General
General
Chemistry-

CH3COOH is reacted with H C identical to C H in presence of Hg2+ , the product is:

CH3COOH is reacted with H C identical to C H in presence of Hg2+ , the product is:

Chemistry-General
General
Maths-

If fraction numerator 1 over denominator a end fraction comma fraction numerator 1 over denominator b end fraction comma fraction numerator 1 over denominator c end fraction are in A.P., where a, b, c are sides of the triangle ABC, then s i n to the power of 2 end exponent invisible function application fraction numerator A over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator B over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator C over denominator 2 end fraction are in

If fraction numerator 1 over denominator a end fraction comma fraction numerator 1 over denominator b end fraction comma fraction numerator 1 over denominator c end fraction are in A.P., where a, b, c are sides of the triangle ABC, then s i n to the power of 2 end exponent invisible function application fraction numerator A over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator B over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator C over denominator 2 end fraction are in

Maths-General
parallel
General
Maths-

Statement1: If a line intersects a hyperbola at (2, 6) and (4, 4) and one of the asymptotes at (1, 2) then the centre of the hyperbola is (1, 2) because
Statement2: Mid point of the chord intercepted by hyperbola is same as midpoint of the chord intercepted between
asymptotes

Statement1: If a line intersects a hyperbola at (2, 6) and (4, 4) and one of the asymptotes at (1, 2) then the centre of the hyperbola is (1, 2) because
Statement2: Mid point of the chord intercepted by hyperbola is same as midpoint of the chord intercepted between
asymptotes

Maths-General
General
Maths-

lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

Maths-General
General
Maths-

lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

Maths-General
parallel
General
Maths-

lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

Maths-General
General
Maths-

The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

PM = length of the tangent
PR = length of the normal to the curve y=f(x)
Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

PM = length of the tangent
PR = length of the normal to the curve y=f(x)
Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

Maths-General
General
Chemistry-

The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

Chemistry-General
parallel
General
Chemistry-

At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

Chemistry-General
General
Chemistry-

For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

Chemistry-General
General
Maths-

In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

Maths-General
parallel
General
Maths-

Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

Maths-General
General
Maths-

If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

Maths-General
General
Maths-

Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.