Chemistry-
General
Easy

Question

Which of the following pairof ions cannot beseparated by H2Sindilute HCl?

  1. B i to the power of 3 plus end exponent comma S n to the power of 4 plus end exponent    
  2. A l to the power of 3 plus end exponent comma H g to the power of 2 plus end exponent    
  3. Z n to the power of 2 plus end exponent comma C u to the power of 2 plus end exponent    
  4. N i to the power of 2 plus end exponent C u to the power of 2 plus end exponent    

The correct answer is: B i to the power of 3 plus end exponent comma S n to the power of 4 plus end exponent

Related Questions to study

General
Chemistry-

Thpairofcom pounds which cannot exist together in solution is:

Thpairofcom pounds which cannot exist together in solution is:

Chemistry-General
General
Maths-

If the greatest value of the term independent of x in expansion of open parentheses x s i n invisible function application p plus x to the power of negative 1 end exponent c o s invisible function application p close parentheses to the power of 10 end exponentis achieved at P equals thetaThen the locus of point from which pair of tangents be drawn to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4including an angle thetais

If the greatest value of the term independent of x in expansion of open parentheses x s i n invisible function application p plus x to the power of negative 1 end exponent c o s invisible function application p close parentheses to the power of 10 end exponentis achieved at P equals thetaThen the locus of point from which pair of tangents be drawn to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4including an angle thetais

Maths-General
General
Maths-

The sum of the series fraction numerator 5 over denominator 1.4 to the power of 2 end exponent end fraction plus fraction numerator 11 over denominator 4 to the power of 2 end exponent times 7 to the power of 2 end exponent end fraction plus fraction numerator 17 over denominator 7 to the power of 2 end exponent times 10 to the power of 2 end exponent end fraction plus horizontal ellipsis.. plusis equal to

The sum of the series fraction numerator 5 over denominator 1.4 to the power of 2 end exponent end fraction plus fraction numerator 11 over denominator 4 to the power of 2 end exponent times 7 to the power of 2 end exponent end fraction plus fraction numerator 17 over denominator 7 to the power of 2 end exponent times 10 to the power of 2 end exponent end fraction plus horizontal ellipsis.. plusis equal to

Maths-General
parallel

In the expansion of open parentheses x plus x to the power of 2 end exponent plus horizontal ellipsis horizontal ellipsis.. close parentheses open parentheses 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent close parentheses open parentheses x to the power of 2 end exponent plus horizontal ellipsis horizontal ellipsis. plus x to the power of 10 end exponent close parenthesesthe coefficient of is

Maths-General
General
Maths-

Statement 1:The coefficient of x to the power of n end exponent in the binomial expansion of left parenthesis 1 minus x right parenthesis to the power of negative 2 end exponent is left parenthesis n plus 1 right parenthesis
Statement 2:The coefficient of x to the power of r end exponent in left parenthesis 1 minus x right parenthesis to the power of negative n end exponent when n element of N is blank to the power of n plus r minus 1 end exponent C subscript r end subscript

Statement 1:The coefficient of x to the power of n end exponent in the binomial expansion of left parenthesis 1 minus x right parenthesis to the power of negative 2 end exponent is left parenthesis n plus 1 right parenthesis
Statement 2:The coefficient of x to the power of r end exponent in left parenthesis 1 minus x right parenthesis to the power of negative n end exponent when n element of N is blank to the power of n plus r minus 1 end exponent C subscript r end subscript

Maths-General
General
Maths-

If the left parenthesis r plus 1 right parenthesisth term in the expansion of open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction plus fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 end exponenthas equal exponents of both a and b, then value of r is

If the left parenthesis r plus 1 right parenthesisth term in the expansion of open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction plus fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 end exponenthas equal exponents of both a and b, then value of r is

Maths-General
parallel
General
Maths-

If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

Maths-General
General
Maths-

The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

Maths-General
General
Maths-

The coefficient of t to the power of 24 end exponent in the expansion of open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis is

The coefficient of t to the power of 24 end exponent in the expansion of open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis is

Maths-General
parallel
General
Maths-

The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

Maths-General
General
Maths-

Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

Maths-General
General
Maths-

If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

Maths-General
parallel
General
Maths-

Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

Maths-General
General
Maths-

left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

Maths-General
General
Maths-

The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.