Question
Two objects that are the same shape but not the same size are _______.
- Congruent
- Vertical
- Similar
- Complementary
Hint:
We are give four options. We have to find the suitable option for the given question. We are given that, the two objects have same shape but their sizes are different. We are asked what we would call such objects.
The correct answer is: Similar
The objects which have same shape but different sizes are called as similar.
They are similar in most of the aspects. Their dimensions are proportional to each other.
The objects which are identical are called as congruent objects.
Related Questions to study
Are the two triangles are similar?
We should know about different properties of similar triangles. We have to be careful about which sides to choose for the ratio. We should also know about different similarity tests.
Are the two triangles are similar?
We should know about different properties of similar triangles. We have to be careful about which sides to choose for the ratio. We should also know about different similarity tests.
You are making a guitar pick that resembles an equilateral triangle with side lengths of 32 millimeters. The approximate height of the pick is?
For such questions, the properties of right-angled triangles are important. We should know about the trigonometric ratios. It includes sine, cosine, tangent etc.
You are making a guitar pick that resembles an equilateral triangle with side lengths of 32 millimeters. The approximate height of the pick is?
For such questions, the properties of right-angled triangles are important. We should know about the trigonometric ratios. It includes sine, cosine, tangent etc.
Find the value of y, if you know the value of x=16
We should know the properties of a right-angled triangle. Pythagoras theorem is very important while solving the questions of a right-angled triangle.
Find the value of y, if you know the value of x=16
We should know the properties of a right-angled triangle. Pythagoras theorem is very important while solving the questions of a right-angled triangle.
A power pole 10 m tall casts a shadow 8 meters long, at the same time that a building nearby casts a shadow 14 m long. Find the building tall.
We should know about different properties of similar triangles. We have to be careful about which sides to choose for the ratio. We should also know about different similarity tests.
A power pole 10 m tall casts a shadow 8 meters long, at the same time that a building nearby casts a shadow 14 m long. Find the building tall.
We should know about different properties of similar triangles. We have to be careful about which sides to choose for the ratio. We should also know about different similarity tests.
Find the length of the altitude of triangle PQR.
To solve such questions, we should know the properties of right-angled triangles and similar triangles. Similar triangles have different sizes, but are of same shape. Their sides are in different proportion, but their angles are same. As a shortcut, we can just remember the last step of the above expression.
Find the length of the altitude of triangle PQR.
To solve such questions, we should know the properties of right-angled triangles and similar triangles. Similar triangles have different sizes, but are of same shape. Their sides are in different proportion, but their angles are same. As a shortcut, we can just remember the last step of the above expression.
Find the value of y.
For such questions, we should know the properties of right-angled triangle. We should know the trignometric ratios. The values of different sines and cosines should be known.
Find the value of y.
For such questions, we should know the properties of right-angled triangle. We should know the trignometric ratios. The values of different sines and cosines should be known.
A square has side length 95. The length of the diagonal of the square is? Express your answer in simplest radical form.
For such questions, we should know the properties of the right-angled triangle. The other method to solve it will be 45°-45°-90° theorem. Due to diagonal, the triangle which is formed has the sides in proportion 1:1:√2. Therefore, the value of hypotenuse is given by √2 multiplied by the value of the side.
A square has side length 95. The length of the diagonal of the square is? Express your answer in simplest radical form.
For such questions, we should know the properties of the right-angled triangle. The other method to solve it will be 45°-45°-90° theorem. Due to diagonal, the triangle which is formed has the sides in proportion 1:1:√2. Therefore, the value of hypotenuse is given by √2 multiplied by the value of the side.