Maths-
General
Easy

Question

A piece of paper is in the shape of a square of side 1 m long. It is cut at the four corners to make a regular polygon of eight sides (octagon). The area of the polygon is

  1. 2 open parentheses square root of 2 minus 1 close parentheses m to the power of 2 end exponent  
  2. open parentheses square root of 2 minus 1 close parentheses m to the power of 2 end exponent  
  3. fraction numerator 1 over denominator square root of 2 end fraction m to the power of 2 end exponent  
  4. None of these  

The correct answer is: 2 open parentheses square root of 2 minus 1 close parentheses m to the power of 2 end exponent



    Clearly,blank x plus square root of 2 x plus x equals 1. Socomma blank x equals fraction numerator 1 over denominator 2 plus square root of 2 end fraction
    The required area equals open parentheses 1 to the power of 2 end exponent minus 4 cross times fraction numerator 1 over denominator 2 end fraction x to the power of 2 end exponent close parentheses m to the power of 2 end exponent
    equals open curly brackets 1 minus 2 fraction numerator 1 over denominator open parentheses 2 plus square root of 2 close parentheses to the power of 2 end exponent end fraction close curly brackets m to the power of 2 end exponent
    equals open curly brackets 1 minus fraction numerator 1 over denominator open parentheses square root of 2 plus 1 close parentheses to the power of 2 end exponent end fraction close curly brackets m to the power of 2 end exponent
    equals open square brackets 1 minus open parentheses square root of 2 minus 1 close parentheses to the power of 2 end exponent close square brackets m to the power of 2 end exponent equals 2 open parentheses square root of 2 minus 1 close parentheses m to the power of 2 end exponent

    Related Questions to study

    General
    Maths-

    The number of solution of the equation tan invisible function application x tan invisible function application 4 x equals 1 blankfor 0 less than x less than pi is

    The number of solution of the equation tan invisible function application x tan invisible function application 4 x equals 1 blankfor 0 less than x less than pi is

    Maths-General
    General
    Maths-

    The value of cot invisible function application 70 degree plus 4 cos invisible function application 70 degree is

    The value of cot invisible function application 70 degree plus 4 cos invisible function application 70 degree is

    Maths-General
    General
    Maths-

    In triangle A B C comma blank angle A equals 60 degree comma angle B equals 40 degree blankandblank angle C equals 80 degree. If P is the centre of the circumcircle of triangle A B C with radius unity, then the radius of the circumcircle of triangle B P C is

    In triangle A B C comma blank angle A equals 60 degree comma angle B equals 40 degree blankandblank angle C equals 80 degree. If P is the centre of the circumcircle of triangle A B C with radius unity, then the radius of the circumcircle of triangle B P C is

    Maths-General
    parallel
    General
    Maths-

    If inblank increment A B C comma sin invisible function application A cos invisible function application B equals fraction numerator square root of 2 minus 1 over denominator square root of 2 end fraction and sin invisible function application B cos invisible function application A equals fraction numerator 1 over denominator square root of 2 end fraction comma blankthen the triangle is

    If inblank increment A B C comma sin invisible function application A cos invisible function application B equals fraction numerator square root of 2 minus 1 over denominator square root of 2 end fraction and sin invisible function application B cos invisible function application A equals fraction numerator 1 over denominator square root of 2 end fraction comma blankthen the triangle is

    Maths-General
    General
    Maths-

    The equation 2 cos to the power of 2 end exponent invisible function application fraction numerator x over denominator 2 end fraction sin to the power of 2 end exponent invisible function application x equals x to the power of 2 end exponent equals x to the power of negative 2 end exponent semicolon 0 less than x less or equal than fraction numerator pi over denominator 2 end fraction has

    The equation 2 cos to the power of 2 end exponent invisible function application fraction numerator x over denominator 2 end fraction sin to the power of 2 end exponent invisible function application x equals x to the power of 2 end exponent equals x to the power of negative 2 end exponent semicolon 0 less than x less or equal than fraction numerator pi over denominator 2 end fraction has

    Maths-General
    General
    Maths-

    If sin invisible function application x plus c o s e c blank x equals 2 comma then sin to the power of n end exponent invisible function application x plus blank c o s e c to the power of n end exponent x is equal to

    If sin invisible function application x plus c o s e c blank x equals 2 comma then sin to the power of n end exponent invisible function application x plus blank c o s e c to the power of n end exponent x is equal to

    Maths-General
    parallel
    General
    Maths-

    In triangle A B C comma blankif tan invisible function application open parentheses A divided by 2 close parentheses equals 5 divided by 6 and tan invisible function application open parentheses B divided by 2 close parentheses equals 20 divided by 37 comma blankthe sides a comma blank b blankandblank c are in

    In triangle A B C comma blankif tan invisible function application open parentheses A divided by 2 close parentheses equals 5 divided by 6 and tan invisible function application open parentheses B divided by 2 close parentheses equals 20 divided by 37 comma blankthe sides a comma blank b blankandblank c are in

    Maths-General
    General
    Maths-

    cos to the power of 3 end exponent invisible function application x sin invisible function application 2 x equals not stretchy sum from x equals 0 to n of a subscript r end subscript sin invisible function application open parentheses r blank x close parentheses for all x element of R comma blank t h e n

    cos to the power of 3 end exponent invisible function application x sin invisible function application 2 x equals not stretchy sum from x equals 0 to n of a subscript r end subscript sin invisible function application open parentheses r blank x close parentheses for all x element of R comma blank t h e n

    Maths-General
    General
    Maths-

    If the equation cot to the power of 4 end exponent invisible function application x minus 2 blank c o s e c to the power of 2 end exponent blank x plus a to the power of 2 end exponent equals 0 has at least one solution, then the sum of all possible integral values of ´ a to the power of ´ end exponent is equal to

    If the equation cot to the power of 4 end exponent invisible function application x minus 2 blank c o s e c to the power of 2 end exponent blank x plus a to the power of 2 end exponent equals 0 has at least one solution, then the sum of all possible integral values of ´ a to the power of ´ end exponent is equal to

    Maths-General
    parallel
    General
    Maths-

    Letblank f open parentheses n close parentheses equals 2 cos invisible function application n x for all n element of N comma blank t h e n blank f open parentheses 1 close parentheses blank f open parentheses n plus 1 close parentheses minus f open parentheses n close parentheses is equal to

    Letblank f open parentheses n close parentheses equals 2 cos invisible function application n x for all n element of N comma blank t h e n blank f open parentheses 1 close parentheses blank f open parentheses n plus 1 close parentheses minus f open parentheses n close parentheses is equal to

    Maths-General
    General
    Maths-

    In any triangle A B C comma sin to the power of 2 end exponent invisible function application A minus sin to the power of 2 end exponent invisible function application B plus sin to the power of 2 end exponent invisible function application C is always equal to

    In any triangle A B C comma sin to the power of 2 end exponent invisible function application A minus sin to the power of 2 end exponent invisible function application B plus sin to the power of 2 end exponent invisible function application C is always equal to

    Maths-General
    General
    Maths-

    The number of solution of sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x sin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0 in 0 less or equal than x less or equal than 3 pi is

    The number of solution of sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x sin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0 in 0 less or equal than x less or equal than 3 pi is

    Maths-General
    parallel
    General
    Maths-

    The range of k for which the inequality k cos to the power of 2 end exponent invisible function application x minus k cos invisible function application x plus 1 greater or equal than 0 blank for all x element of open parentheses negative infinity comma infinity close parentheses comma is

    The range of k for which the inequality k cos to the power of 2 end exponent invisible function application x minus k cos invisible function application x plus 1 greater or equal than 0 blank for all x element of open parentheses negative infinity comma infinity close parentheses comma is

    Maths-General
    General
    Maths-

    In triangle A B C, angle A is greater than angle B. If the measures of angles A and B satisfy the equation 3 sin invisible function application x minus 4 sin to the power of 3 end exponent invisible function application x minus k equals 0 comma 0 less than k less than 1, then the measure of angle C is

    In triangle A B C, angle A is greater than angle B. If the measures of angles A and B satisfy the equation 3 sin invisible function application x minus 4 sin to the power of 3 end exponent invisible function application x minus k equals 0 comma 0 less than k less than 1, then the measure of angle C is

    Maths-General
    General
    Maths-

    In triangle A B C if angle C is 90 degree and area of triangle is 30 sq. units, then the minimum possible value of the hypotenuse c is equal to

    In triangle A B C if angle C is 90 degree and area of triangle is 30 sq. units, then the minimum possible value of the hypotenuse c is equal to

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.