Maths-
General
Easy

Question

fraction numerator d over denominator d x end fraction open parentheses cosec to the power of negative 1 end exponent invisible function application open parentheses e to the power of 2 x plus 1 end exponent close parentheses close parentheses equals

  1. fraction numerator negative 1 over denominator square root of e to the power of 2 x plus 1 end exponent minus 1 end root end fraction    
  2. fraction numerator negative 2 over denominator square root of e to the power of 4 x plus 2 end exponent minus 1 end root end fraction    
  3. fraction numerator 2 over denominator square root of e to the power of 4 x plus 2 end exponent plus 1 end root end fraction    
  4. fraction numerator negative 2 over denominator square root of e to the power of 4 x plus 2 end exponent plus 1 end root end fraction    

hintHint:

We are given a function. We have to find its derivative. We will use the formula required to solve the question.

The correct answer is: fraction numerator negative 2 over denominator square root of e to the power of 4 x plus 2 end exponent minus 1 end root end fraction


    The given function is y space equals space cos e c to the power of negative 1 end exponent left parenthesis e to the power of 2 x space plus space 1 end exponent right parenthesis
    We have to find the derivative of this function.
    Let's take the derivative
    fraction numerator d y over denominator d x end fraction space equals space fraction numerator d over denominator d x end fraction left square bracket cos e c to the power of negative 1 end exponent left parenthesis e to the power of 2 x space plus space 1 end exponent right parenthesis right square bracket

fraction numerator d over denominator d a end fraction left parenthesis cos e c to the power of negative 1 end exponent a right parenthesis space equals space minus fraction numerator 1 over denominator a square root of a squared minus 1 end root end fraction space space space space space space space space space
H e r e space a space i s space a n y space v a r i a b l e
    Now we will differentiate the function using the above formula.
    fraction numerator d y over denominator d x end fraction space equals space fraction numerator d over denominator d x end fraction left square bracket cos e c to the power of negative 1 end exponent left parenthesis e to the power of 2 x space plus space 1 end exponent right parenthesis right square bracket
space space space space space space space space equals space fraction numerator negative 1 over denominator e to the power of 2 x space plus 1 end exponent square root of left parenthesis e to the power of 2 x space plus 1 right parenthesis end exponent right parenthesis squared space minus space 1 space end root end fraction fraction numerator d over denominator d x end fraction e to the power of 2 x space plus space 1 end exponent
space space space space space space space space equals space fraction numerator negative 1 over denominator e to the power of 2 x space plus space 1 end exponent square root of e to the power of 4 x space plus space 2 end exponent minus space 1 end root end fraction open parentheses e to the power of 2 x space plus 1 end exponent fraction numerator d over denominator d x end fraction 2 x space plus space 1 close parentheses
space space space space space space space space equals space fraction numerator negative 1 over denominator e to the power of 2 x plus space 1 end exponent square root of e to the power of 4 x space plus space 2 end exponent minus space 1 end root end fraction space cross times space 2 e to the power of 2 x space plus space 1 end exponent
space space space space space space space equals space fraction numerator negative 2 over denominator square root of e to the power of 4 x space plus space 2 end exponent space minus space 1 end root end fraction

T h i s space i s space t h e space f i n a l space a n s w e r
fraction numerator d y over denominator d x end fraction space equals space fraction numerator negative 2 over denominator square root of e to the power of 4 x space plus space 2 end exponent space minus space 1 end root end fraction

    For such questions, we should know different formulas.

    Related Questions to study

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    Maths-General

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    General
    Maths-

    Locus of the foot of perpendicular fr om (-2,3) to a variable line with x intercept 2 is

    Locus of the foot of perpendicular fr om (-2,3) to a variable line with x intercept 2 is

    Maths-General
    General
    Maths-

    Vertices of a triangle are (4, 3) , left parenthesis 5 blank s i n blank capital theta comma blank 5 blank c o s blank capital theta right parenthesis comma left parenthesis 5 blank c o s blank capital theta comma blank minus 5 blank s i n blank capital theta right parenthesis Then the locus of the orthocenter is

    Vertices of a triangle are (4, 3) , left parenthesis 5 blank s i n blank capital theta comma blank 5 blank c o s blank capital theta right parenthesis comma left parenthesis 5 blank c o s blank capital theta comma blank minus 5 blank s i n blank capital theta right parenthesis Then the locus of the orthocenter is

    Maths-General
    parallel
    General
    Maths-

    A line through A(-5, -4) meets the line x+3y+2=0, 2x+y+4=0 and x-y-5=0 at B comma C and D respectively. If left parenthesis fraction numerator 15 over denominator A B end fraction right parenthesis to the power of 2 end exponent plus left parenthesis fraction numerator 10 over denominator A C end fraction right parenthesis to the power of 2 end exponent equals left parenthesis fraction numerator 6 over denominator A D end fraction right parenthesis to the power of 2 end exponent then the equation of the line is

    A line through A(-5, -4) meets the line x+3y+2=0, 2x+y+4=0 and x-y-5=0 at B comma C and D respectively. If left parenthesis fraction numerator 15 over denominator A B end fraction right parenthesis to the power of 2 end exponent plus left parenthesis fraction numerator 10 over denominator A C end fraction right parenthesis to the power of 2 end exponent equals left parenthesis fraction numerator 6 over denominator A D end fraction right parenthesis to the power of 2 end exponent then the equation of the line is

    Maths-General
    General
    Maths-

    If x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript as well as y subscript 1 end subscript comma y subscript 2 end subscript comma y subscript 3 end subscript are in G.P with the same common ratio, then the points left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis comma left parenthesis x subscript 3 end subscript comma y subscript 3 end subscript right parenthesis .

    If x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript as well as y subscript 1 end subscript comma y subscript 2 end subscript comma y subscript 3 end subscript are in G.P with the same common ratio, then the points left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis comma left parenthesis x subscript 3 end subscript comma y subscript 3 end subscript right parenthesis .

    Maths-General
    General
    Maths-

    The range of alpha for which the points left parenthesis alpha comma 2 plus alpha right parenthesis and left parenthesis fraction numerator 3 alpha over denominator 2 end fraction comma alpha to the power of 2 end exponent right parenthesis lie on opposite side of the line 2x+3y=6 is

    The range of alpha for which the points left parenthesis alpha comma 2 plus alpha right parenthesis and left parenthesis fraction numerator 3 alpha over denominator 2 end fraction comma alpha to the power of 2 end exponent right parenthesis lie on opposite side of the line 2x+3y=6 is

    Maths-General
    parallel
    General
    Maths-

    The internal bisectors of the a capital delta A B C, having the sides BC=3, CA=5 and AB =4 meet the sides BC, CA and AB in D, E and F respectively, the area of capital delta D E F is

    The internal bisectors of the a capital delta A B C, having the sides BC=3, CA=5 and AB =4 meet the sides BC, CA and AB in D, E and F respectively, the area of capital delta D E F is

    Maths-General
    General
    Maths-

    A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q As L varies, the absolute minimum value of OP+OQ= where O is the origin

    A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q As L varies, the absolute minimum value of OP+OQ= where O is the origin

    Maths-General
    General
    Maths-

    Vertices of a variable triangle are (3, 4) left parenthesis 5 blank c o s blank theta comma blank 5 blank s i n blank theta right parenthesis and left parenthesis 5 blank s i n blank theta minus 5 blank c o s blank theta right parenthesis where theta element of R blankLocus of its orthocenter is

    Vertices of a variable triangle are (3, 4) left parenthesis 5 blank c o s blank theta comma blank 5 blank s i n blank theta right parenthesis and left parenthesis 5 blank s i n blank theta minus 5 blank c o s blank theta right parenthesis where theta element of R blankLocus of its orthocenter is

    Maths-General
    parallel
    General
    Maths-

    If (0,0), (a, 2), (2, b) form the vertices of an equilateral triangle, where a and b not lie between 0 and 2, then the value of 4(aplusb)‐ab equals

    If (0,0), (a, 2), (2, b) form the vertices of an equilateral triangle, where a and b not lie between 0 and 2, then the value of 4(aplusb)‐ab equals

    Maths-General
    General
    Maths-

    The lines a x plus b y plus left parenthesis a alpha plus b right parenthesis equals 0 comma b x plus c y plus left parenthesis b alpha plus c right parenthesis equals 0 and left parenthesis a alpha plus b right parenthesis x plus left parenthesis b alpha plus c right parenthesis y equals 0 are concurrent if

    The lines a x plus b y plus left parenthesis a alpha plus b right parenthesis equals 0 comma b x plus c y plus left parenthesis b alpha plus c right parenthesis equals 0 and left parenthesis a alpha plus b right parenthesis x plus left parenthesis b alpha plus c right parenthesis y equals 0 are concurrent if

    Maths-General
    General
    Maths-

    Equation of the line perpendicular to 4x + 7y + 9 = 0 and such that the triangle formed by it with the coordinates axes forms an area of 3.5 sq. units is

    Equation of the line perpendicular to 4x + 7y + 9 = 0 and such that the triangle formed by it with the coordinates axes forms an area of 3.5 sq. units is

    Maths-General
    parallel
    General
    Maths-

    (0, 0) is the foot of the perpendicular from (4, 2) on a straight line. The equation of the line is

    (0, 0) is the foot of the perpendicular from (4, 2) on a straight line. The equation of the line is

    Maths-General
    General
    Maths-

    The orthocentre of the triangle having vertices at (2, 3) (2, 5) (4, 3) is

    The orthocentre of the triangle having vertices at (2, 3) (2, 5) (4, 3) is

    Maths-General
    General
    Maths-

    Each side of square is length 5. The centre of square is (3, 7) and one of the diagonals is parallel to y = x. Then the coordinates of its vertices are

    Therefore, the coordinates of vertices of square are (1, 5) (1, 9) (5, 9) (5, 5).

    Each side of square is length 5. The centre of square is (3, 7) and one of the diagonals is parallel to y = x. Then the coordinates of its vertices are

    Maths-General

    Therefore, the coordinates of vertices of square are (1, 5) (1, 9) (5, 9) (5, 5).

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.