Question
Hint:
We are given a function. We have to find the derivative of the function. We will simplify the function first. We will use the substitution method.
The correct answer is: ![fraction numerator 1 over denominator 2 open parentheses 1 plus x to the power of 2 end exponent close parentheses end fraction]()
![y space equals fraction numerator d over denominator d x end fraction left curly bracket tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus x squared end root space minus space 1 over denominator x end fraction close parentheses right curly bracket
space space space space]()
We will simplify the function before solving. We will substitution method to simplify the equation.
![L e t space
space space space space space space x space equals tan A
W e space w i l l space s u b s t i t u t e space t h i s space v a l u e space i n space t h e space c o m p o n e n t space o f space t h e space f u n c t i o n
fraction numerator square root of 1 plus x squared end root minus 1 over denominator x end fraction space equals fraction numerator square root of 1 space plus space tan squared A end root minus 1 over denominator tan A end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator square root of s e c squared A end root minus 1 over denominator tan A end fraction space space space space space space space space... left parenthesis 1 space plus space tan squared theta space equals s e c squared theta right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator s e c A space minus 1 over denominator tan A end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator begin display style fraction numerator 1 over denominator cos A end fraction end style minus 1 over denominator begin display style fraction numerator sin A over denominator cos A end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 1 space minus space cos A over denominator sin A end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 sin squared begin display style A over 2 end style over denominator 2 sin begin display style A over 2 end style cos begin display style A over 2 end style end fraction space space space space space space... open curly brackets table attributes columnalign left end attributes row cell cos 2 theta space equals space 1 space minus 2 sin squared theta end cell row cell sin 2 theta space equals 2 sin theta cos theta end cell end table close
space space space space space
space space]()
![equals fraction numerator sin begin display style A over 2 end style over denominator cos begin display style A over 2 end style end fraction
space space
equals tan A over 2]()
We will substitute this value in the function.
![y space equals space fraction numerator d over denominator d x end fraction open curly brackets tan to the power of negative 1 end exponent open parentheses tan A over 2 close parentheses close curly brackets
space space space space space equals fraction numerator d over denominator d x end fraction open parentheses A over 2 close parentheses
W e space w i l l space r e s u b s t i t u t e space t h e space v a l u e space o f space A
x space equals tan A
A space equals tan to the power of negative 1 end exponent left parenthesis x right parenthesis
y space equals fraction numerator d over denominator d x end fraction open parentheses 1 half tan to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses
space space space space equals 1 half open parentheses tan to the power of negative 1 end exponent x close parentheses
space space space space equals 1 half open parentheses fraction numerator 1 over denominator 1 space plus space x squared end fraction close parentheses
y equals fraction numerator 1 over denominator 2 left parenthesis 1 space plus space x squared right parenthesis end fraction
space space space space space]()
This is the solution.
For such questions, we will use different formulas.
Related Questions to study
The length of the perpendicular from the incentre of the triangle formed by the axes and the line
to the hypotenuse is
The length of the perpendicular from the incentre of the triangle formed by the axes and the line
to the hypotenuse is
If
is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram
If
is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram
For such questions, we should know how to use u by v method.
For such questions, we should know how to use u by v method.
For such questions, we should know u.v method.
For such questions, we should know u.v method.
We should know different formulas to solve such questions.
We should know different formulas to solve such questions.
For such questions, we should know different formulas.
For such questions, we should know different formulas.
For such questions, we should know different formulas.
For such questions, we should know different formulas.
The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.
The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.