Maths-
General
Easy

Question

If in triangle ABC comma straight A identical to left parenthesis 1 comma 10 right parenthesis, circumcenter identical to open parentheses negative 1 third comma 2 over 3 close parentheses and orthocenter identical to open parentheses 11 over 3 comma 4 over 3 close parentheses then the co-ordinates of mid-point of side opposite to  is :

  1. (1, -11/3)
  2. (1,5)
  3. (1, -3)
  4. (1,6)

hintHint:

Centroid, orthocenter, circumcenter are collinear. The centroid divides the median in 2:1 ratio.

The correct answer is: (1, -11/3)


    Given That:
    If in triangle ABC comma straight A identical to left parenthesis 1 comma 10 right parenthesis, circumcenter identical to open parentheses negative 1 third comma 2 over 3 close parentheses and orthocenter identical to open parentheses 11 over 3 comma 4 over 3 close parentheses then the co-ordinates of mid-point of side opposite to  is :
    >>>The orthocenter, centroid and circumcenter of any triangle are collinear. And the centroid divides the distance from orthocenter to circumcenter in the ratio 2:1.
    >>Let the centroid be G(xy) , its coordinates can be found using the section formula. Then,
                                 left parenthesis x comma space y right parenthesis space equals space left parenthesis fraction numerator negative begin display style 2 over 3 end style plus begin display style 11 over 3 end style over denominator 3 end fraction comma fraction numerator begin display style 4 over 3 end style plus begin display style 4 over 3 end style over denominator 3 end fraction right parenthesis space equals space left parenthesis 1 comma 8 over 9 right parenthesis
    >>> Also, the centroid (G) divides the medians (AD) in the ratio 2:1. Then:
    >>>Let the coordinates of D be (hk)
    1 equals fraction numerator 2 h plus 1 over denominator 3 end fraction space a n d space 8 over 9 equals space fraction numerator 2 k plus 10 over denominator 3 end fraction
    h=1    and  6k+30=8
    and  k = negative 11 over 3
    D(hk)=(1,negative 11 over 3)

    >>> The orthocenter, centroid and circumcenter of any triangle are collinear. And the centroid divides the distance from orthocenter to circumcenter in the ratio 2:1.
    >>> Also, the centroid (G) divides the medians (AD) in the ratio 2:1. 
    >>> D(hk)=(1,negative 11 over 3)

    Related Questions to study

    General
    maths-

    A triangle ABC with vertices A(-1,0), B(-2,3/4)&C(-3,-7/6) has its orthocentre H. Then the orthocentre of triangle BCH will be

    A triangle ABC with vertices A(-1,0), B(-2,3/4)&C(-3,-7/6) has its orthocentre H. Then the orthocentre of triangle BCH will be

    maths-General
    General
    Maths-

    ABC is an equilateral triangle such that the vertices B and C lie on two parallel lines at a distance 6 If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle is

     >>> acosθ=6 ----(1)
     >>> a(sin(30θ))=4 ----(2)
    >>> a = fraction numerator 4 square root of 7 over denominator square root of 3 end fraction

    ABC is an equilateral triangle such that the vertices B and C lie on two parallel lines at a distance 6 If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle is

    Maths-General

     >>> acosθ=6 ----(1)
     >>> a(sin(30θ))=4 ----(2)
    >>> a = fraction numerator 4 square root of 7 over denominator square root of 3 end fraction

    General
    Maths-

    If the point left parenthesis 1 plus cos invisible function application theta comma sin invisible function application theta right parenthesis lies between the region corresponding to the acute angle between the lines x-3y=0 and x-6y=0 then

    >>> L11 cross times L22 <0
    >>>   (1+costheta)2 -6sintheta -6sinthetacostheta -3sintheta-3sinthetacostheta+18sintheta2 < 0

    If the point left parenthesis 1 plus cos invisible function application theta comma sin invisible function application theta right parenthesis lies between the region corresponding to the acute angle between the lines x-3y=0 and x-6y=0 then

    Maths-General

    >>> L11 cross times L22 <0
    >>>   (1+costheta)2 -6sintheta -6sinthetacostheta -3sintheta-3sinthetacostheta+18sintheta2 < 0

    parallel
    General
    Maths-

    If P open parentheses 1 plus fraction numerator alpha over denominator square root of 2 end fraction comma 2 plus fraction numerator alpha over denominator square root of 2 end fraction close parentheses be any point on a line then the range of  for which the point ' P ' lies between the parallel lines x+2y=1 and 2x+4y=15 is

    ((1+fraction numerator alpha over denominator square root of 2 end fraction)+2(2 plus fraction numerator alpha over denominator square root of 2 end fraction) -1).(2 left parenthesis 1 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis plus 4 left parenthesis 2 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis minus 15) < 0

    If P open parentheses 1 plus fraction numerator alpha over denominator square root of 2 end fraction comma 2 plus fraction numerator alpha over denominator square root of 2 end fraction close parentheses be any point on a line then the range of  for which the point ' P ' lies between the parallel lines x+2y=1 and 2x+4y=15 is

    Maths-General

    ((1+fraction numerator alpha over denominator square root of 2 end fraction)+2(2 plus fraction numerator alpha over denominator square root of 2 end fraction) -1).(2 left parenthesis 1 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis plus 4 left parenthesis 2 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis minus 15) < 0

    General
    maths-

    is any point in the interior of the quadrilateral formed by the pair of lines  and the two lines 2x+y-2=0 and 4x+5y=20 then the possible number of positions of the points ' P ' is

    is any point in the interior of the quadrilateral formed by the pair of lines  and the two lines 2x+y-2=0 and 4x+5y=20 then the possible number of positions of the points ' P ' is

    maths-General
    General
    Maths-

    If the point P open parentheses a squared comma a close parentheses subscript minus,lies in the region corresponding to the acute angle between the lines 2y=x and 4y=x then - .....

    u ≡ x - 2y = 0 and v ≡ x - 4y = 0
    >>>    S(x, y) ≡ x² - 6xy + 8y² = 0
    >>>     ( a - 2 )( a - 4 ) < 0

    If the point P open parentheses a squared comma a close parentheses subscript minus,lies in the region corresponding to the acute angle between the lines 2y=x and 4y=x then - .....

    Maths-General

    u ≡ x - 2y = 0 and v ≡ x - 4y = 0
    >>>    S(x, y) ≡ x² - 6xy + 8y² = 0
    >>>     ( a - 2 )( a - 4 ) < 0

    parallel
    General
    Maths-

    Consider A(0,1) and B(2,0) and P be a point on the line 4x+3y+9=0, co-ordinates of P such vertical line PA minus PB vertical line is maximum is

     Hence the point is (negative 18 over 59 over 5).

    Consider A(0,1) and B(2,0) and P be a point on the line 4x+3y+9=0, co-ordinates of P such vertical line PA minus PB vertical line is maximum is

    Maths-General

     Hence the point is (negative 18 over 59 over 5).

    General
    Maths-

    Assertion (A): The lines represented by 3 x squared plus 10 x y plus 3 y squared minus 16 x minus 16 y plus 16 equals 0 and x+ y=2 do not form a triangle
    Reason (R): The above three lines concur at (1,1)

    Both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.

    Assertion (A): The lines represented by 3 x squared plus 10 x y plus 3 y squared minus 16 x minus 16 y plus 16 equals 0 and x+ y=2 do not form a triangle
    Reason (R): The above three lines concur at (1,1)

    Maths-General

    Both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.

    General
    chemistry-

    In Bohr’s hydrogen atom, the electronic transition emitting light of longest wavelength is:

    In Bohr’s hydrogen atom, the electronic transition emitting light of longest wavelength is:

    chemistry-General
    parallel
    General
    Maths-

    P1,P2,P3, be the product of perpendiculars from (0,0) to  x y plus x plus y plus 1 equals 0 comma x squared minus y squared plus 2 x plus 1 equals 0 comma 2 x squared plus 3 x y minus 2 y squared plus 3 x plus y plus 1 equals 0  respectively then:

    P1 = 1;
    P2 = 1 half;
    P3 = fraction numerator 1 over denominator square root of 7 end fraction;
    >>> Therefore, we can say that P1>P2>P3.

    P1,P2,P3, be the product of perpendiculars from (0,0) to  x y plus x plus y plus 1 equals 0 comma x squared minus y squared plus 2 x plus 1 equals 0 comma 2 x squared plus 3 x y minus 2 y squared plus 3 x plus y plus 1 equals 0  respectively then:

    Maths-General

    P1 = 1;
    P2 = 1 half;
    P3 = fraction numerator 1 over denominator square root of 7 end fraction;
    >>> Therefore, we can say that P1>P2>P3.

    General
    Maths-

    If θ is angle between pair of lines x squared minus 3 x y plus lambda y squared plus 3 x minus 5 y plus 2 equals 0, then cosec squared invisible function application theta equals

    >>> lambda = 2.
    >>> tantheta = 1 third
    >>> cos e c squared theta = 10.

    If θ is angle between pair of lines x squared minus 3 x y plus lambda y squared plus 3 x minus 5 y plus 2 equals 0, then cosec squared invisible function application theta equals

    Maths-General

    >>> lambda = 2.
    >>> tantheta = 1 third
    >>> cos e c squared theta = 10.

    General
    Maths-

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then 2fgh=

    2fgh=bg2+ch2
     

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then 2fgh=

    Maths-General

    2fgh=bg2+ch2
     

    parallel
    General
    Maths-

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then ac=

    g squared equals a c

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then ac=

    Maths-General

    g squared equals a c

    General
    maths-

    If the equation x squared plus p y squared plus q y equals a squared represents a pair of perpendicular lines then its point of intersection is

    If the equation x squared plus p y squared plus q y equals a squared represents a pair of perpendicular lines then its point of intersection is

    maths-General
    General
    Maths-

    If the lines x squared plus 2 x y minus 35 y squared minus 4 x plus 44 y minus 12 equals 0 and 5 x plus lambda y minus 8 equals 0 are concurrent then λ

    >>> The value of lambda is 2.

    If the lines x squared plus 2 x y minus 35 y squared minus 4 x plus 44 y minus 12 equals 0 and 5 x plus lambda y minus 8 equals 0 are concurrent then λ

    Maths-General

    >>> The value of lambda is 2.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.