Maths-
General
Easy

Question

If vertical line z vertical line equals 1 and z not equal to 1, then all the values of fraction numerator z over denominator 1 minus z to the power of 2 end exponent end fraction lie on

  1. a line not passing through the origin    
  2. vertical line z vertical line equals square root of 2    
  3. the x -axis    
  4. the y–axis    

The correct answer is: the y–axis


    we are given some conditions on z and asked to find what values the equation lies on
    space L e t space z equals x plus i y space
therefore space square root of x squared plus y squared space space space end root equals 1 space
rightwards double arrow x squared plus y squared space equals 1 space
therefore space space fraction numerator x plus i y over denominator 1 minus left parenthesis x squared minus y squared plus 2 i x y right parenthesis end fraction
fraction numerator x plus i y over denominator 1 minus x squared plus y squared minus 2 i x y end fraction space equals space fraction numerator x plus i y over denominator 2 y squared plus 2 i x y end fraction ​ space space space
equals space fraction numerator x plus i y over denominator 2 i y left parenthesis negative i y minus x right parenthesis end fraction ​ space space space equals space space fraction numerator i over denominator 2 y end fraction space

    Therefore the correct option is choice 4

    Related Questions to study

    General
    Maths-

    If z is a complex number such that vertical line equals vertical line greater or equal than 2 then the minimum value of ∣ z plus fraction numerator 1 over denominator 2 end fraction is is strictly

    Therefore the correct option is choice 4

    If z is a complex number such that vertical line equals vertical line greater or equal than 2 then the minimum value of ∣ z plus fraction numerator 1 over denominator 2 end fraction is is strictly

    Maths-General

    Therefore the correct option is choice 4

    General
    Maths-

    If open vertical bar fraction numerator z subscript 1 end subscript over denominator z subscript 2 end subscript end fraction close vertical bar equals 1 and a r g invisible function application open parentheses z subscript 1 end subscript z subscript 2 end subscript close parentheses equals 0 then

    Therefore the correct option is choice 3

    If open vertical bar fraction numerator z subscript 1 end subscript over denominator z subscript 2 end subscript end fraction close vertical bar equals 1 and a r g invisible function application open parentheses z subscript 1 end subscript z subscript 2 end subscript close parentheses equals 0 then

    Maths-General

    Therefore the correct option is choice 3

    General
    Maths-

    One of the values of open parentheses cis invisible function application fraction numerator pi over denominator 6 end fraction close parentheses to the power of fraction numerator 1 over denominator 2 end fraction end exponent plus open parentheses cis invisible function application fraction numerator negative pi over denominator 6 end fraction close parentheses to the power of fraction numerator 11 over denominator 2 end fraction end exponent

    One of the values of open parentheses cis invisible function application fraction numerator pi over denominator 6 end fraction close parentheses to the power of fraction numerator 1 over denominator 2 end fraction end exponent plus open parentheses cis invisible function application fraction numerator negative pi over denominator 6 end fraction close parentheses to the power of fraction numerator 11 over denominator 2 end fraction end exponent

    Maths-General
    parallel
    General
    Maths-

    If the distance between the points left parenthesis a c o s invisible function application theta comma a s i n invisible function application theta right parenthesis, left parenthesis a c o s invisible function application ϕ comma a s i n invisible function application ϕ right parenthesis is 2 a
    then theta equals 6
    Assertion (A): If 2 s i n invisible function application fraction numerator theta over denominator 2 end fraction equals square root of 1 plus s i n invisible function application theta end root plus square root of 1 minus s i n invisible function application theta end root, then fraction numerator theta over denominator 2 end fraction lies between
    2 n pi plus fraction numerator pi over denominator 4 end fraction text  and  end text 2 n pi plus fraction numerator 3 pi over denominator 4 end fraction left parenthesis n element of z right parenthesis
    Reason left parenthesis R right parenthesis colon If fraction numerator theta over denominator 2 end fraction element of open parentheses fraction numerator pi over denominator 4 end fraction comma fraction numerator 3 pi over denominator 4 end fraction close parentheses, then s i n invisible function application fraction numerator theta over denominator 2 end fraction greater than 0

    If the distance between the points left parenthesis a c o s invisible function application theta comma a s i n invisible function application theta right parenthesis, left parenthesis a c o s invisible function application ϕ comma a s i n invisible function application ϕ right parenthesis is 2 a
    then theta equals 6
    Assertion (A): If 2 s i n invisible function application fraction numerator theta over denominator 2 end fraction equals square root of 1 plus s i n invisible function application theta end root plus square root of 1 minus s i n invisible function application theta end root, then fraction numerator theta over denominator 2 end fraction lies between
    2 n pi plus fraction numerator pi over denominator 4 end fraction text  and  end text 2 n pi plus fraction numerator 3 pi over denominator 4 end fraction left parenthesis n element of z right parenthesis
    Reason left parenthesis R right parenthesis colon If fraction numerator theta over denominator 2 end fraction element of open parentheses fraction numerator pi over denominator 4 end fraction comma fraction numerator 3 pi over denominator 4 end fraction close parentheses, then s i n invisible function application fraction numerator theta over denominator 2 end fraction greater than 0

    Maths-General
    General
    Maths-

    If c o s e c to the power of 6 end exponent invisible function application q minus c o t to the power of 6 end exponent invisible function application q equals a c o t to the power of 4 end exponent invisible function application q plus b c o t to the power of 2 end exponent invisible function application q plus c then a+b+c=

    So here we have used the trigonometric functions and trigonometric formulas to solve this, the algebraic expressions were used to formulate it. Here the answer of a+b+c is 7.

    If c o s e c to the power of 6 end exponent invisible function application q minus c o t to the power of 6 end exponent invisible function application q equals a c o t to the power of 4 end exponent invisible function application q plus b c o t to the power of 2 end exponent invisible function application q plus c then a+b+c=

    Maths-General

    So here we have used the trigonometric functions and trigonometric formulas to solve this, the algebraic expressions were used to formulate it. Here the answer of a+b+c is 7.

    General
    Maths-

    If a,b,c are the sides of the triangle ABC such that open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1
    Then the triangle A B C must be

    If a,b,c are the sides of the triangle ABC such that open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1
    Then the triangle A B C must be

    Maths-General
    parallel
    General
    Maths-

    If s i n invisible function application y equals x s i n invisible function application left parenthesis a plus y right parenthesis and fraction numerator d y over denominator d x end fraction equals fraction numerator A over denominator 1 plus x to the power of 2 end exponent minus 2 x c o s invisible function application a end fraction then the value of blank to the power of ´ end exponent A ' is

    Therefore the correct option is choice 3

    If s i n invisible function application y equals x s i n invisible function application left parenthesis a plus y right parenthesis and fraction numerator d y over denominator d x end fraction equals fraction numerator A over denominator 1 plus x to the power of 2 end exponent minus 2 x c o s invisible function application a end fraction then the value of blank to the power of ´ end exponent A ' is

    Maths-General

    Therefore the correct option is choice 3

    General
    Maths-

    The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis horizontal ellipsis. open parentheses c o s invisible function application alpha subscript n end subscript close parentheses under the restriction
    0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis horizontal ellipsis subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction & c o t invisible function application alpha subscript 1 end subscript times c o t invisible function application alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis c o t invisible function application alpha subscript n end subscript equals 1 is

    The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis horizontal ellipsis. open parentheses c o s invisible function application alpha subscript n end subscript close parentheses under the restriction
    0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis horizontal ellipsis subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction & c o t invisible function application alpha subscript 1 end subscript times c o t invisible function application alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis c o t invisible function application alpha subscript n end subscript equals 1 is

    Maths-General
    General
    Maths-

    The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are

    The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are

    Maths-General
    parallel
    General
    Maths-

    text If  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript are three non zero real numbers such that open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text  is end text

    text If  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript are three non zero real numbers such that open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text  is end text

    Maths-General
    General
    Maths-

    When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be

    Hence, the new mean is 30.

    When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be

    Maths-General

    Hence, the new mean is 30.

    General
    Maths-

    If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is

    Hence, the coefficient of Mean Deviation is 1/30.

    If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is

    Maths-General

    Hence, the coefficient of Mean Deviation is 1/30.

    parallel
    General
    Maths-

    The standard deviation of the data given by Variate (x) 0 1 2 3. . . . . n Frequency (f) blank to the power of n end exponent C subscript 0 end subscript blank to the power of n end exponent C subscript 1 end subscript blank to the power of n end exponent C subscript 2 end subscript blank to the power of n end exponent C subscript 3 end subscript midline horizontal ellipsis times blank to the power of n end exponent C subscript n end subscript

    The standard deviation of the data given by Variate (x) 0 1 2 3. . . . . n Frequency (f) blank to the power of n end exponent C subscript 0 end subscript blank to the power of n end exponent C subscript 1 end subscript blank to the power of n end exponent C subscript 2 end subscript blank to the power of n end exponent C subscript 3 end subscript midline horizontal ellipsis times blank to the power of n end exponent C subscript n end subscript

    Maths-General
    General
    Maths-

    If the standard deviation of 0,1,2,3…..9 is K, then the standard deviation of 10,11,12,13…. 19 is

    If the standard deviation of 0,1,2,3…..9 is K, then the standard deviation of 10,11,12,13…. 19 is

    Maths-General
    General
    Maths-

    When 15 was subtracted from each of the seven observations the following number resulted : -3,0,-2,4,6,1,1. The mean of the distribution is

    When 15 was subtracted from each of the seven observations the following number resulted : -3,0,-2,4,6,1,1. The mean of the distribution is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.