Maths-
General
Easy

Question

Let a,b,c such that fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals fraction numerator a over denominator 1 minus x end fraction plus fraction numerator b over denominator 1 minus 2 x end fraction plus fraction numerator c over denominator 1 minus 3 x end fraction then ,fraction numerator a over denominator 1 end fraction plus fraction numerator b over denominator 3 end fraction plus fraction numerator c over denominator 5 end fraction equals?

  1. fraction numerator 1 over denominator 15 end fraction    
  2. fraction numerator 1 over denominator 6 end fraction    
  3. fraction numerator 1 over denominator 5 end fraction    
  4. fraction numerator 1 over denominator 3 end fraction    

hintHint:

Take LCM on RHS, then equate the coefficients by comparing LHS and RHS and find the value of a,b, c

The correct answer is: fraction numerator 1 over denominator 15 end fraction


     Given :
    fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals fraction numerator a over denominator 1 minus x end fraction plus fraction numerator b over denominator 1 minus 2 x end fraction plus fraction numerator c over denominator 1 minus 3 x end fraction


    Taking LCM on RHS
    rightwards double arrow fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals space fraction numerator a left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis space plus space b left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 3 x right parenthesis space plus space c left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction


    Simplifying
    rightwards double arrow fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals space fraction numerator a left parenthesis 6 x squared space minus space 5 x space plus 1 right parenthesis space plus space b left parenthesis 3 x squared space minus space 4 x space plus 1 right parenthesis space plus space c left parenthesis 2 x squared space minus 3 x space plus 1 right parenthesis over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction


    Cancelling denominators on both side
    rightwards double arrow 1 over blank equals space fraction numerator a left parenthesis 6 x squared space minus space 5 x space plus 1 right parenthesis space plus space b left parenthesis 3 x squared space minus space 4 x space plus 1 right parenthesis space plus space c left parenthesis 2 x squared space minus 3 x space plus 1 right parenthesis over denominator blank end fraction

    Further simplifying
    rightwards double arrow 1 over blank equals space fraction numerator x squared left parenthesis 6 a space plus 3 b space plus 2 c right parenthesis space plus space x left parenthesis negative 5 a space minus space 4 b space minus 3 c right parenthesis space plus space a space plus space b space plus c over denominator blank end fraction

    Equating coefficients by comparing LHS and RHS
    6 a space plus space 3 b space plus space 2 c space equals space 0 space............. left parenthesis 1 right parenthesis
minus 5 a space minus space 4 b space minus space 3 c space equals space 0 space rightwards double arrow 5 a space plus space 4 b space plus space 3 c space equals space 0 space...... space left parenthesis 2 right parenthesis
a space plus space b space plus space c space equals space 1 space.................. left parenthesis 3 right parenthesis

    Multiplying by 5 in equation 3 and subtracting equation 2 from it, we get
    space space 5 a space plus space 4 b space plus space 3 c space equals space 0 space
minus
space space 5 a space plus 5 space b space plus 5 space c space space equals 5
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
space space space space space space space space space minus b space minus 2 c space equals space minus 5 space rightwards double arrow space b space plus space 2 c space equals space 5 space........ space left parenthesis 4 right parenthesis
    Multiplying by 6 in equation 3 and subtracting equation 1 from it, we get
    space space space space 6 a space plus space 3 b space plus space 2 c space equals space 0
minus
space space space space 6 a space plus space 6 b space plus space 6 c space equals space 6
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
space space space space space space space space space space space minus 3 b space minus 4 c space equals space minus 6 space rightwards double arrow space 3 b space plus space 4 c space equals space 6 space...... space left parenthesis 5 right parenthesis

    Multiplying by 2 in equation 4 and subtracting equation 5 from it, we get
    Multiplying by 6 in equation 3 and subtracting equation 1 from it, we get

    2b + 4c = 10
    -
    3b + 4c = 6
    ______________
    - b = 4
    b = -4
    Substituting value of b, we get c = 9/2 and a = 1/2
    a over 1 space plus space b over 3 space plus space c over 5 space equals space 1 half space plus space fraction numerator negative 4 over denominator 3 end fraction space plus space 9 over 10 space equals space 2 over 30 space equals space 1 over 15

    Related Questions to study

    General
    Maths-

    If fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction then B=

    If fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction then B=

    Maths-General
    General
    Maths-

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    Maths-General
    General
    Maths-

    Assertion : f left parenthesis x right parenthesis equals s g n invisible function application left parenthesis x minus vertical line x vertical line right parenthesis can never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Assertion : f left parenthesis x right parenthesis equals s g n invisible function application left parenthesis x minus vertical line x vertical line right parenthesis can never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Maths-General
    parallel
    General
    Maths-

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    Maths-General
    General
    maths-

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    maths-General
    General
    maths-

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    maths-General
    parallel
    General
    maths-

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    maths-General
    General
    maths-

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    maths-General
    General
    maths-

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    maths-General
    parallel
    General
    maths-

    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

    maths-General
    General
    maths-

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    maths-General
    General
    maths-

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    maths-General
    parallel
    General
    maths-

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    maths-General
    General
    maths-

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    maths-General
    General
    maths-

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.