Maths-
General
Easy

Question

Statement 1:If sum of n terms of a series is 6 n to the power of 2 end exponent plus 3 n plus 1 then the series is in AP.
Statement 2:Sum of n terms of an AP is always of the form a n to the power of 2 end exponent plus b n.

  1. Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1  
  2. Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1  
  3. Statement 1 is True, Statement 2 is False  
  4. Statement 1 is False, Statement 2 is True  

The correct answer is: Statement 1 is False, Statement 2 is True


    because blankSum of n terms of an AP is S subscript n end subscript equals fraction numerator n over denominator 2 end fraction open square brackets 2 A plus open parentheses n minus 1 close parentheses D close square brackets.
    Where A and D are first term and common difference.
    Hence, sum always of the form a n to the power of 2 end exponent plus b n.

    Related Questions to study

    General
    Maths-

    Statement 1:If the arithmetic mean of two numbers is 5/2, geometric mean of the numbers is 2, then the harmonic mean will be 8/5
    Statement 2:For a group of positive numbers open parentheses G. M. close parentheses to the power of 2 end exponent equals open parentheses A. M. close parentheses cross times left parenthesis H. M. right parenthesis

    Statement 1:If the arithmetic mean of two numbers is 5/2, geometric mean of the numbers is 2, then the harmonic mean will be 8/5
    Statement 2:For a group of positive numbers open parentheses G. M. close parentheses to the power of 2 end exponent equals open parentheses A. M. close parentheses cross times left parenthesis H. M. right parenthesis

    Maths-General
    General
    Maths-

    Statement 1:The sum of n terms of two arithmetic progressions are in the ratio open parentheses 7 n plus 1 close parentheses colon open parentheses 4 n plus 17 close parentheses comma then the ratio of their nth terms is 7: 4.
    Statement 2:If S subscript n end subscript equals a x to the power of 2 end exponent plus b x plus c comma then T subscript n end subscript equals S subscript n end subscript minus S subscript n minus 1 end subscript

    Statement 1:The sum of n terms of two arithmetic progressions are in the ratio open parentheses 7 n plus 1 close parentheses colon open parentheses 4 n plus 17 close parentheses comma then the ratio of their nth terms is 7: 4.
    Statement 2:If S subscript n end subscript equals a x to the power of 2 end exponent plus b x plus c comma then T subscript n end subscript equals S subscript n end subscript minus S subscript n minus 1 end subscript

    Maths-General
    General
    Maths-

    Let a comma blank r element of R minus left curly bracket 0 comma blank 1 comma blank minus 1 right curly bracket and n be an even number
    Statement 1:a cross times a r cross times a r to the power of 2 end exponent midline horizontal ellipsis a r to the power of n minus 1 end exponent equals open parentheses a to the power of 2 end exponent r to the power of n minus 1 end exponent close parentheses to the power of n divided by 2 end exponent
    Statement 2:Product of i to the power of t h end exponent term from the beginning and from the end in a G.P. is independent of i

    Let a comma blank r element of R minus left curly bracket 0 comma blank 1 comma blank minus 1 right curly bracket and n be an even number
    Statement 1:a cross times a r cross times a r to the power of 2 end exponent midline horizontal ellipsis a r to the power of n minus 1 end exponent equals open parentheses a to the power of 2 end exponent r to the power of n minus 1 end exponent close parentheses to the power of n divided by 2 end exponent
    Statement 2:Product of i to the power of t h end exponent term from the beginning and from the end in a G.P. is independent of i

    Maths-General
    parallel
    General
    Maths-

    Statement 1:Let p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript and x be distinct real number such that open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript superscript 2 end superscript close parentheses x to the power of 2 end exponent plus 2 open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript blank p subscript r plus 1 end subscript close parentheses x plus not stretchy sum from r equals 2 to n of p subscript r end subscript superscript 2 end superscript less or equal than 0, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P. and when a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus a subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0 comma blank a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis equals a subscript n end subscript equals 0
    Statement 2:If fraction numerator p subscript 2 end subscript over denominator p subscript 1 end subscript end fraction equals fraction numerator p subscript 3 end subscript over denominator p subscript 2 end subscript end fraction equals horizontal ellipsis equals fraction numerator p subscript n end subscript over denominator p subscript n minus 1 end subscript end fraction, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P.

    Statement 1:Let p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript and x be distinct real number such that open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript superscript 2 end superscript close parentheses x to the power of 2 end exponent plus 2 open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript blank p subscript r plus 1 end subscript close parentheses x plus not stretchy sum from r equals 2 to n of p subscript r end subscript superscript 2 end superscript less or equal than 0, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P. and when a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus a subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0 comma blank a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis equals a subscript n end subscript equals 0
    Statement 2:If fraction numerator p subscript 2 end subscript over denominator p subscript 1 end subscript end fraction equals fraction numerator p subscript 3 end subscript over denominator p subscript 2 end subscript end fraction equals horizontal ellipsis equals fraction numerator p subscript n end subscript over denominator p subscript n minus 1 end subscript end fraction, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P.

    Maths-General
    General
    Maths-

    Statement 1:If 3 x plus 4 y equals 5 comma then the greatest value of x to the power of 2 end exponent y to the power of 3 end exponent is fraction numerator 3 over denominator 16 end fraction.
    Statement 2:Greatest value occurs when 9 x equals 8 y.

    Statement 1:If 3 x plus 4 y equals 5 comma then the greatest value of x to the power of 2 end exponent y to the power of 3 end exponent is fraction numerator 3 over denominator 16 end fraction.
    Statement 2:Greatest value occurs when 9 x equals 8 y.

    Maths-General
    General
    Maths-

    Statement 1:There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)
    Statement 2:Given terms are integers

    Statement 1:There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)
    Statement 2:Given terms are integers

    Maths-General
    parallel
    General
    Maths-

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Maths-General
    General
    Maths-

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Maths-General
    General
    Maths-

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Maths-General
    parallel
    General
    Maths-

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Maths-General
    General
    Maths-

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Maths-General
    General
    Maths-

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Maths-General
    parallel
    General
    Maths-

    The harmonic mean of the roots of the equation open parentheses 5 plus square root of 2 close parentheses x to the power of 2 end exponent minus open parentheses 4 plus square root of 5 close parentheses x plus 8 plus 2 square root of 5 equals 0 is

    The harmonic mean of the roots of the equation open parentheses 5 plus square root of 2 close parentheses x to the power of 2 end exponent minus open parentheses 4 plus square root of 5 close parentheses x plus 8 plus 2 square root of 5 equals 0 is

    Maths-General
    General
    Maths-

    The sum to 50 terms of the series fraction numerator 3 over denominator 1 to the power of 2 end exponent end fraction plus fraction numerator 5 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent end fraction plus fraction numerator 7 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent plus 3 to the power of 2 end exponent end fraction plus horizontal ellipsis is

    The sum to 50 terms of the series fraction numerator 3 over denominator 1 to the power of 2 end exponent end fraction plus fraction numerator 5 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent end fraction plus fraction numerator 7 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent plus 3 to the power of 2 end exponent end fraction plus horizontal ellipsis is

    Maths-General
    General
    Maths-

    If a comma blank x and b are in A.P., a comma blank y comma and b are in G.P. and a comma blank z comma blank b are in H.P. such that x equals 9 z and a greater than 0 comma blank b greater than 0, then

    If a comma blank x and b are in A.P., a comma blank y comma and b are in G.P. and a comma blank z comma blank b are in H.P. such that x equals 9 z and a greater than 0 comma blank b greater than 0, then

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.