Maths-
General
Easy

Question

Solve each compound inequality and graph the solution
2x-5 > 3 and -4x+7 < -25
 

hintHint:

If two real numbers or algebraic expressions are related by the symbols “>”, “<”, “≥”, “≤”, then the relation is called an inequality. For example, x>5 (x should be greater than 5).
A compound inequality is a sentence with two inequality statements joined either by the word “or” or by the word “and.” “And” indicates that both statements of the compound sentence are true at the same time. “Or” indicates that, as long as either statement is true, the entire compound sentence is true.
If the symbol is (≥ or ≤) then you fill in the dot and if the symbol is (> or <) then you do not fill in the dot.
 

The correct answer is: Hence, the final inequality is x > 8


    Solving the first inequality for x

    2x-5 > 3

    2x > 8
    Dividing 2 both sides

    x > 4
    Solving the second inequality for x

    -4x+7 < -25

    -4x < -32
    Dividing -4 both sides

    x > 8
    So, the final result is x > 4 and x > 8
    Plotting the graph


    Final Answer:
    Hence, the final inequality is x > 8

    Divide a compound inequality into two individual inequalities before solving it. The solution should either be a union of sets ("or") or an intersection of sets ("and"). After that, resolve the graph and all inequalities.
    Use the steps below to resolve an inequality:
    Step 1: Fractions are first eliminated by multiplying all terms by the total fractions' lowest common denominator.
    Step 2: Simplify the inequality by combining like terms on each side.
    Step 3: Subtract or add quantities to get the unknown on one side and the numbers on the other.

    Related Questions to study

    General
    Maths-

    The slope of line a is – 4. Line b is perpendicular to line a. The equation of line c is 3y + 12x = 6. What is the relation between line b and line c?

    The slope of line a is – 4. Line b is perpendicular to line a. The equation of line c is 3y + 12x = 6. What is the relation between line b and line c?

    Maths-General
    General
    Maths-

    Nadeem plans to ride her bike between 12 mi and 15 mi. Write and solve an inequality to model how many hours Nadeem will be riding?

    In this question, the time taken to ride by Nadeem is to be calculated with the help of the speed and distance formula (time = distance/speed). So, for example, to determine the time required to complete a journey, we must first know the distance and speed.
    There are three different ways to write the formula. They are:
    • speed = distance ÷ time
    • distance = speed × time
    • time = distance ÷ speed
    Calculating with the time formula gives us the answer as an inequality.

    Nadeem plans to ride her bike between 12 mi and 15 mi. Write and solve an inequality to model how many hours Nadeem will be riding?

    Maths-General

    In this question, the time taken to ride by Nadeem is to be calculated with the help of the speed and distance formula (time = distance/speed). So, for example, to determine the time required to complete a journey, we must first know the distance and speed.
    There are three different ways to write the formula. They are:
    • speed = distance ÷ time
    • distance = speed × time
    • time = distance ÷ speed
    Calculating with the time formula gives us the answer as an inequality.

    General
    Maths-

    Solve each compound inequality and graph the solution:
    2(4x + 3) ≥ -10 or -5x - 15 > 5

    Solve each compound inequality and graph the solution:
    2(4x + 3) ≥ -10 or -5x - 15 > 5

    Maths-General
    parallel
    General
    Maths-

    Solve each compound inequality and graph the solution
    -x+1 > -2 and 6(2x-3) ≥ -6

    Solve each compound inequality and graph the solution
    -x+1 > -2 and 6(2x-3) ≥ -6

    Maths-General
    General
    Maths-

    Solve each compound inequality and graph the solution:
    4x - 1 > 3 and -2(3x - 4) ≥ -16

    Inequalities define the relationship between two values that are not equal. Not equal is the definition of inequality. In most cases, we use the "not equal symbol ()" to indicate that two values are not equal. But several inequalities are employed to compare the values, whether they are less than or more.
    Step 1: The values on the number line that satisfy each inequality in the compound inequality are shaded on the graph. The graph's endpoint should be marked with a filled-in circle to show that a value included in the inequality symbol is either or; otherwise, the endpoint should be marked with an open circle to show that a value is not included. There should be an arrow pointing in that direction at the end of the graph that never ends.
    Step 2: The graph of the compound inequality is the intersection of the two graphs from Step 1 if the compound inequality contains the term AND. Only the portion of the number line that appears in both graphs should be shaded. The graph of the compound inequality is the union of the two graphs from Step 1 if the compound inequality contains the term OR. Incorporate both of these graphs into the last one.

    Solve each compound inequality and graph the solution:
    4x - 1 > 3 and -2(3x - 4) ≥ -16

    Maths-General

    Inequalities define the relationship between two values that are not equal. Not equal is the definition of inequality. In most cases, we use the "not equal symbol ()" to indicate that two values are not equal. But several inequalities are employed to compare the values, whether they are less than or more.
    Step 1: The values on the number line that satisfy each inequality in the compound inequality are shaded on the graph. The graph's endpoint should be marked with a filled-in circle to show that a value included in the inequality symbol is either or; otherwise, the endpoint should be marked with an open circle to show that a value is not included. There should be an arrow pointing in that direction at the end of the graph that never ends.
    Step 2: The graph of the compound inequality is the intersection of the two graphs from Step 1 if the compound inequality contains the term AND. Only the portion of the number line that appears in both graphs should be shaded. The graph of the compound inequality is the union of the two graphs from Step 1 if the compound inequality contains the term OR. Incorporate both of these graphs into the last one.

    General
    Maths-

    Find the distance between the lines y = x + 1 and y = x – 1

    Find the distance between the lines y = x + 1 and y = x – 1

    Maths-General
    parallel
    General
    Maths-

    Solve each compound inequality and graph the solution
    negative x plus 1 greater than negative 2 text  or  end text 6 left parenthesis 2 x minus 3 right parenthesis greater or equal than negative 6

    Solve each compound inequality and graph the solution
    negative x plus 1 greater than negative 2 text  or  end text 6 left parenthesis 2 x minus 3 right parenthesis greater or equal than negative 6

    Maths-General
    General
    Maths-

    What is the least number of blocks Alex has to travel to reach Kevin?

     

    What is the least number of blocks Alex has to travel to reach Kevin?

     

    Maths-General
    General
    Maths-

    Write a compound inequality for each graph:

    Write a compound inequality for each graph:

    Maths-General
    parallel
    General
    Maths-

    What is the shortest path between points A and B?

    What is the shortest path between points A and B?

    Maths-General
    General
    Maths-

    Draw the taxicab circle with the given radius r and centre C.
    I) r = 1, C = (1, 1)
    II) r = 2, C = (-2, -2)

    Draw the taxicab circle with the given radius r and centre C.
    I) r = 1, C = (1, 1)
    II) r = 2, C = (-2, -2)

    Maths-General
    General
    Maths-

    Solve each compound inequality and graph the solution
    2 x minus 5 greater than 3 text  or  end text minus 4 x plus 7 less than negative 25

    On the number line, we can graph the compound inequalities. When graphing compound inequalities, keep the following points in mind.
    • Consider a number on the number line that corresponds to the inequality. For example, if x > 2, we must determine where '2' falls on the number line.
    • If the inequality is either ">" or "<, "place an open dot (to indicate that the value is "NOT" included).
    If the inequality is either "≥" or " ≤, "place a closed dot to include the value.
    For example, if x > 2, place an open dot at '2' because the inequality is strict and does not include " =."
    • Place an arrow symbol on the right side of the number for the ">" or "≥" sign.
    • Place an arrow symbol on the left side of the number for the " <"or " ≤" sign.
    • Finally, use the intersection or union, depending on whether "AND" or "OR" is given, to find the final solution.

    Solve each compound inequality and graph the solution
    2 x minus 5 greater than 3 text  or  end text minus 4 x plus 7 less than negative 25

    Maths-General

    On the number line, we can graph the compound inequalities. When graphing compound inequalities, keep the following points in mind.
    • Consider a number on the number line that corresponds to the inequality. For example, if x > 2, we must determine where '2' falls on the number line.
    • If the inequality is either ">" or "<, "place an open dot (to indicate that the value is "NOT" included).
    If the inequality is either "≥" or " ≤, "place a closed dot to include the value.
    For example, if x > 2, place an open dot at '2' because the inequality is strict and does not include " =."
    • Place an arrow symbol on the right side of the number for the ">" or "≥" sign.
    • Place an arrow symbol on the left side of the number for the " <"or " ≤" sign.
    • Finally, use the intersection or union, depending on whether "AND" or "OR" is given, to find the final solution.

    parallel
    General
    Maths-

    The sum of two expressions is x3 -x2 + 3x- 2. If one of them is x2 + 5x- 6, what is the
    other?

    The sum of two expressions is x3 -x2 + 3x- 2. If one of them is x2 + 5x- 6, what is the
    other?

    Maths-General
    General
    Maths-

    Find the missing coordinate k if the taxicab distance between (-7, 10) and (k, 5) is 8.

    Find the missing coordinate k if the taxicab distance between (-7, 10) and (k, 5) is 8.

    Maths-General
    General
    Maths-

    Write the compound inequality for the graph :

    Write the compound inequality for the graph :

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.