Chemistry-
General
Easy

Question

The shortest and longest wave number in H spectrum of Lyman series is (R equalsRydberg constant)

  1. fraction numerator 3 over denominator 4 end fraction R comma blank R    
  2. fraction numerator 1 over denominator R end fraction comma fraction numerator 4 over denominator 3 end fraction R    
  3. R comma fraction numerator 4 over denominator 3 end fraction R    
  4. R comma fraction numerator 3 over denominator 4 end fraction R    

The correct answer is: fraction numerator 3 over denominator 4 end fraction R comma blank R


    Shortest stack v with minus on top means shortest E and vice versa
    When,n equals 1 comma blank n subscript 2 end subscript equals 2
    stack v with minus on top equals R open parentheses fraction numerator 1 over denominator 1 to the power of 2 end exponent end fraction minus fraction numerator 1 over denominator 2 to the power of 2 end exponent end fraction close parentheses equals fraction numerator 3 over denominator 4 end fraction R
    Longest stack v with minus on topmeans longest E
    When n subscript 1 end subscript equals 1 comma blank n subscript 2 end subscript equals infinity
    stack v with minus on top equals R open parentheses fraction numerator 1 over denominator 1 to the power of 2 end exponent end fraction minus fraction numerator 1 over denominator infinity to the power of 2 end exponent end fraction close parentheses equals R

    Related Questions to study

    General
    Chemistry-

    The line spectrum of two elements is not identical because

    The line spectrum of two elements is not identical because

    Chemistry-General
    General
    Chemistry-

    How many electrons in an atom with atomic number 105 can have open parentheses n plus l close parentheses equals 8 ?

    How many electrons in an atom with atomic number 105 can have open parentheses n plus l close parentheses equals 8 ?

    Chemistry-General
    General
    Maths-

    A r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank y equals open vertical bar x close vertical bar blank a n d blank y equals 2 blank i s

    A r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank y equals open vertical bar x close vertical bar blank a n d blank y equals 2 blank i s

    Maths-General
    parallel
    General
    Maths-

    T h e blank a r e a blank b o u n d e d blank b y blank y to the power of 2 end exponent equals 4 a x blank a n d blank y equals m x blank i s fraction numerator a to the power of 2 end exponent over denominator 3 end fraction s q. blank u n i t s blank t h e n blank m equals blank

    T h e blank a r e a blank b o u n d e d blank b y blank y to the power of 2 end exponent equals 4 a x blank a n d blank y equals m x blank i s fraction numerator a to the power of 2 end exponent over denominator 3 end fraction s q. blank u n i t s blank t h e n blank m equals blank

    Maths-General
    General
    Maths-

    I f blank z to the power of 2 end exponent plus z plus 1 equals 0 comma where z is a complex number, then the value of open parentheses z plus fraction numerator 1 over denominator z end fraction close parentheses to the power of 2 end exponent plus open parentheses z to the power of 2 end exponent plus fraction numerator 1 over denominator z to the power of 2 end exponent end fraction close parentheses to the power of 2 end exponent plus open parentheses z to the power of 1 end exponent plus fraction numerator 1 over denominator z to the power of 3 end exponent end fraction close parentheses to the power of 2 end exponent plus midline horizontal ellipsis plus open parentheses z to the power of 6 end exponent plus fraction numerator 1 over denominator z to the power of 6 end exponent end fraction close parentheses to the power of 2 end exponent text  is end text

    I f blank z to the power of 2 end exponent plus z plus 1 equals 0 comma where z is a complex number, then the value of open parentheses z plus fraction numerator 1 over denominator z end fraction close parentheses to the power of 2 end exponent plus open parentheses z to the power of 2 end exponent plus fraction numerator 1 over denominator z to the power of 2 end exponent end fraction close parentheses to the power of 2 end exponent plus open parentheses z to the power of 1 end exponent plus fraction numerator 1 over denominator z to the power of 3 end exponent end fraction close parentheses to the power of 2 end exponent plus midline horizontal ellipsis plus open parentheses z to the power of 6 end exponent plus fraction numerator 1 over denominator z to the power of 6 end exponent end fraction close parentheses to the power of 2 end exponent text  is end text

    Maths-General
    General
    Maths-

    T h e blank a r e a blank o f blank t h e blank g r e a t e r blank r e g i o n blank b o u n d e d blank b y blank y equals C o s blank x semicolon blank y equals x plus 1 blank a n d blank y equals 0 blank i s

    T h e blank a r e a blank o f blank t h e blank g r e a t e r blank r e g i o n blank b o u n d e d blank b y blank y equals C o s blank x semicolon blank y equals x plus 1 blank a n d blank y equals 0 blank i s

    Maths-General
    parallel
    General
    Maths-

    T h e blank a r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank square root of x plus square root of y equals 1 blank i n blank t h e blank f i r s t blank q u a d r a n t blank i s

    T h e blank a r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank square root of x plus square root of y equals 1 blank i n blank t h e blank f i r s t blank q u a d r a n t blank i s

    Maths-General
    General
    Maths-

    The area of the region bounded by the curve y=f(x), x-axis and the ordinates x=a, x=b (a>b) is

    For such questions, we should be careful about the limits on variable.

    The area of the region bounded by the curve y=f(x), x-axis and the ordinates x=a, x=b (a>b) is

    Maths-General

    For such questions, we should be careful about the limits on variable.

    General
    Maths-

    T h e blank l i n e blank x equals fraction numerator pi over denominator 4 end fraction blank d i v i d e s blank t h e blank a r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank y equals s i n blank x comma blank y equals c o s blank x blank a n d blank x minus a x i s open parentheses 0 less or equal than x less or equal than fraction numerator pi over denominator 2 end fraction close parentheses text into two regions of areas  end text A subscript 1 end subscript blank a n d blank A subscript 2 end subscript blank t h e n blank A subscript 1 end subscript colon A subscript 2 end subscript equals

    T h e blank l i n e blank x equals fraction numerator pi over denominator 4 end fraction blank d i v i d e s blank t h e blank a r e a blank o f blank t h e blank r e g i o n blank b o u n d e d blank b y blank y equals s i n blank x comma blank y equals c o s blank x blank a n d blank x minus a x i s open parentheses 0 less or equal than x less or equal than fraction numerator pi over denominator 2 end fraction close parentheses text into two regions of areas  end text A subscript 1 end subscript blank a n d blank A subscript 2 end subscript blank t h e n blank A subscript 1 end subscript colon A subscript 2 end subscript equals

    Maths-General
    parallel
    General
    Maths-

    T h e blank a r e a blank e n c l o s e d blank b e t w e e n blank t h e blank c u r v e s blank y to the power of 2 end exponent equals x blank a n d blank y equals open vertical bar x close vertical bar blank i s

    T h e blank a r e a blank e n c l o s e d blank b e t w e e n blank t h e blank c u r v e s blank y to the power of 2 end exponent equals x blank a n d blank y equals open vertical bar x close vertical bar blank i s

    Maths-General
    General
    Maths-

    The number of solutions of the equation
    sin 2x = [1 + sin 2x] + [1 cos 2x] in open square brackets 0 comma fraction numerator pi over denominator 2 end fraction close square bracketswhere [.] is the greatest
    integer function is

    The number of solutions of the equation
    sin 2x = [1 + sin 2x] + [1 cos 2x] in open square brackets 0 comma fraction numerator pi over denominator 2 end fraction close square bracketswhere [.] is the greatest
    integer function is

    Maths-General
    General
    Maths-

    If c o s invisible function application x c o s invisible function application 2 x c o s invisible function application 4 x c o s invisible function application 8 x equals fraction numerator cosec invisible function application x over denominator 16 end fraction, then

    If c o s invisible function application x c o s invisible function application 2 x c o s invisible function application 4 x c o s invisible function application 8 x equals fraction numerator cosec invisible function application x over denominator 16 end fraction, then

    Maths-General
    parallel
    General
    Maths-

    T h e blank a r e a blank o f blank t h e blank r e g i o n blank open parentheses i n blank s q. blank u n i t s close parentheses comma blank i n blank t h e blank f i r s t blank q u a d r a n t comma blank b o u n d e d blank b y blank t h e blank p a r a b o l a blank y equals 9 x to the power of 2 end exponent blank a n d blank t h e blank l i n e s blank x equals 0 comma y equals 1 blank a n d blank y equals 4 blank i s colon

    T h e blank a r e a blank o f blank t h e blank r e g i o n blank open parentheses i n blank s q. blank u n i t s close parentheses comma blank i n blank t h e blank f i r s t blank q u a d r a n t comma blank b o u n d e d blank b y blank t h e blank p a r a b o l a blank y equals 9 x to the power of 2 end exponent blank a n d blank t h e blank l i n e s blank x equals 0 comma y equals 1 blank a n d blank y equals 4 blank i s colon

    Maths-General
    General
    Maths-

    Number of solutions of the equation Sin x + sin2x + sin3 x + sin4x + ……. Π= 2 where x Π[0,4Π], is

    Number of solutions of the equation Sin x + sin2x + sin3 x + sin4x + ……. Π= 2 where x Π[0,4Π], is

    Maths-General
    General
    Maths-

    The number of real solutions of the equation s i n invisible function application open parentheses fraction numerator pi x over denominator 2 square root of 3 end fraction close parentheses equals x to the power of 2 end exponent minus 2 square root of 3 x plus 4is

    The number of real solutions of the equation s i n invisible function application open parentheses fraction numerator pi x over denominator 2 square root of 3 end fraction close parentheses equals x to the power of 2 end exponent minus 2 square root of 3 x plus 4is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.