Maths-
General
Easy

Question

If y equals T a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus a to the power of 2 end exponent x to the power of 2 end exponent end root minus 1 over denominator a x end fraction close parentheses text  then  end text open parentheses 1 plus a to the power of 2 end exponent x to the power of 2 end exponent close parentheses y to the power of parallel to end exponent plus 2 a to the power of 2 end exponent x y to the power of ´ end exponent equals

  1. a to the power of 2 end exponent    
  2. 2a to the power of 2 end exponent    
  3. -2a to the power of 2 end exponent    
  4. 0    

hintHint:

We are given a function. We have to find the second derivative and first derivative of the function. Then we have to substitute the value in the given equation. We have to find the value of equation.

The correct answer is: 0


    The given function is
    y space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 space plus space a squared x squared end root space minus space 1 over denominator a x end fraction close parentheses
    We have to find the value of
    left parenthesis space 1 space plus space a squared x squared right parenthesis y apostrophe apostrophe space plus space 2 a squared x y apostrophe space
    We will simplify the given function before finding the derivative.
    We will substitute ax = tanA in the given function.
    So, the function becomes
    y space equals tan to the power of negative 1 space end exponent fraction numerator square root of 1 space plus space a squared x squared end root minus 1 over denominator a x end fraction
a x space equals space tan A
y space equals tan to the power of negative 1 end exponent fraction numerator square root of 1 space plus space tan squared A end root space minus space 1 over denominator tan A end fraction
space space space equals tan to the power of negative 1 end exponent fraction numerator square root of s e c squared A end root minus 1 over denominator tan A end fraction
space space space equals tan to the power of negative 1 end exponent fraction numerator s e c A space minus space 1 over denominator tan A end fraction
space space space equals tan to the power of negative 1 end exponent fraction numerator begin display style fraction numerator 1 over denominator cos A end fraction end style minus 1 over denominator begin display style fraction numerator sin A over denominator cos A end fraction end style end fraction
space space equals tan to the power of negative 1 end exponent fraction numerator 1 space minus space cos A over denominator sin A end fraction
space space equals tan to the power of negative 1 end exponent fraction numerator 2 sin squared begin display style A over 2 end style over denominator 2 sin begin display style A over 2 end style cos begin display style A over 2 end style end fraction
space space equals tan to the power of negative 1 end exponent fraction numerator sin begin display style A over 2 end style over denominator cos begin display style A over 2 end style end fraction
space space equals tan to the power of negative 1 end exponent left parenthesis tan A over 2 right parenthesis
y space equals A over 2
N o w comma space tan A space equals space a x
space space space space space space space space space space space space space A space equals space tan to the power of negative 1 end exponent a x
space y space equals space fraction numerator tan to the power of negative 1 end exponent a x over denominator 2 end fraction
    Now we will take first derivative
    y apostrophe equals space open parentheses 1 half close parentheses fraction numerator 1 over denominator 1 space plus space left parenthesis a x right parenthesis squared end fraction left parenthesis a right parenthesis
space space space equals space 1 half fraction numerator a over denominator 1 space plus space left parenthesis a x right parenthesis squared end fraction
    Taking the second derivative
    y apostrophe equals a over 2 left square bracket space 1 space plus space left parenthesis a x right parenthesis squared right square bracket to the power of negative 1 end exponent space
space y " space equals a over 2 left parenthesis negative 1 right parenthesis left square bracket space 1 space plus space left parenthesis a x right parenthesis squared right square bracket to the power of negative 1 space minus 1 end exponent space fraction numerator d over denominator d x end fraction left square bracket 1 space plus space left parenthesis a x right parenthesis squared right square bracket space space space space space space space space
space space space space space space equals fraction numerator negative a over denominator 2 end fraction fraction numerator 1 over denominator left square bracket 1 space plus space left parenthesis a x right parenthesis squared right square bracket squared end fraction left square bracket 0 space plus space 2 a x space left parenthesis a right parenthesis right square bracket
space space space space space space equals fraction numerator negative 2 a cubed x over denominator 2 left square bracket space 1 space plus left parenthesis a x right parenthesis squared right square bracket end fraction
    We will substitute the value.
    left parenthesis 1 space plus space a squared x squared right parenthesis y " space plus space 2 a squared x y apostrophe space equals left parenthesis 1 space plus space a squared x squared right parenthesis fraction numerator negative 2 a cubed x over denominator 2 left parenthesis 1 space plus space a squared x squared right parenthesis squared end fraction plus space 2 a squared x fraction numerator a over denominator 2 left square bracket 1 space plus space left parenthesis a x right parenthesis squared right square bracket end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator negative a cubed x over denominator left parenthesis 1 space plus space a squared x squared right parenthesis end fraction plus fraction numerator a cubed x over denominator left parenthesis 1 space plus space a squared x squared right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 0
    So, the final answer is 0

    For such questions, we should know different trigonometric formulas. We should simplify the function first before finding derivatives.

    Related Questions to study

    General
    Maths-

    If y equals c o s to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a to the power of 2 end exponent minus x to the power of 2 end exponent over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses plus s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 a x over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses text  then  end text fraction numerator d y over denominator d x end fraction equals

    For such questions, we should know the formulas of inverse functions.

    If y equals c o s to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a to the power of 2 end exponent minus x to the power of 2 end exponent over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses plus s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 a x over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses text  then  end text fraction numerator d y over denominator d x end fraction equals

    Maths-General

    For such questions, we should know the formulas of inverse functions.

    General
    Maths-

    If y equals s i n invisible function application 2 x s i n invisible function application 3 x s i n invisible function application 4 x text  then  end text y to the power of parallel to end exponent equals

    For such questions, we should know different formulas.

    If y equals s i n invisible function application 2 x s i n invisible function application 3 x s i n invisible function application 4 x text  then  end text y to the power of parallel to end exponent equals

    Maths-General

    For such questions, we should know different formulas.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open curly brackets Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus x to the power of 2 end exponent end root minus 1 over denominator x end fraction close parentheses close curly brackets equals

    For such questions, we will use different formulas.

    fraction numerator d over denominator d x end fraction open curly brackets Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus x to the power of 2 end exponent end root minus 1 over denominator x end fraction close parentheses close curly brackets equals

    Maths-General

    For such questions, we will use different formulas.

    parallel
    General
    Maths-

    The length of the perpendicular from the incentre of the triangle formed by the axes and the line fraction numerator x over denominator 3 end fraction plus fraction numerator y over denominator 4 end fraction equals 1 to the hypotenuse is

    The length of the perpendicular from the incentre of the triangle formed by the axes and the line fraction numerator x over denominator 3 end fraction plus fraction numerator y over denominator 4 end fraction equals 1 to the hypotenuse is

    Maths-General
    General
    Maths-

    If theta is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram

    If theta is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram

    Maths-General
    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator a x plus b over denominator c x plus d end fraction close parentheses equals

    For such questions, we should know how to use u by v method.

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator a x plus b over denominator c x plus d end fraction close parentheses equals

    Maths-General

    For such questions, we should know how to use u by v method.

    parallel
    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses e to the power of x to the power of 2 end exponent end exponent a to the power of x end exponent close parentheses equals

    For such questions, we should know u.v method.

    fraction numerator d over denominator d x end fraction open parentheses e to the power of x to the power of 2 end exponent end exponent a to the power of x end exponent close parentheses equals

    Maths-General

    For such questions, we should know u.v method.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application square root of fraction numerator 1 minus c o s invisible function application x over denominator 1 plus c o s invisible function application x end fraction end root close parentheses equals

    We should know different formulas to solve such questions.

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application square root of fraction numerator 1 minus c o s invisible function application x over denominator 1 plus c o s invisible function application x end fraction end root close parentheses equals

    Maths-General

    We should know different formulas to solve such questions.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a minus x over denominator 1 plus infinity x end fraction close parentheses close parentheses equals

    For such questions, we should know different formulas.

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a minus x over denominator 1 plus infinity x end fraction close parentheses close parentheses equals

    Maths-General

    For such questions, we should know different formulas.

    parallel
    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses cosec to the power of negative 1 end exponent invisible function application open parentheses e to the power of 2 x plus 1 end exponent close parentheses close parentheses equals

    For such questions, we should know different formulas.

    fraction numerator d over denominator d x end fraction open parentheses cosec to the power of negative 1 end exponent invisible function application open parentheses e to the power of 2 x plus 1 end exponent close parentheses close parentheses equals

    Maths-General

    For such questions, we should know different formulas.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    Maths-General

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    General
    Maths-

    Locus of the foot of perpendicular fr om (-2,3) to a variable line with x intercept 2 is

    Locus of the foot of perpendicular fr om (-2,3) to a variable line with x intercept 2 is

    Maths-General
    parallel
    General
    Maths-

    Vertices of a triangle are (4, 3) , left parenthesis 5 blank s i n blank capital theta comma blank 5 blank c o s blank capital theta right parenthesis comma left parenthesis 5 blank c o s blank capital theta comma blank minus 5 blank s i n blank capital theta right parenthesis Then the locus of the orthocenter is

    Vertices of a triangle are (4, 3) , left parenthesis 5 blank s i n blank capital theta comma blank 5 blank c o s blank capital theta right parenthesis comma left parenthesis 5 blank c o s blank capital theta comma blank minus 5 blank s i n blank capital theta right parenthesis Then the locus of the orthocenter is

    Maths-General
    General
    Maths-

    A line through A(-5, -4) meets the line x+3y+2=0, 2x+y+4=0 and x-y-5=0 at B comma C and D respectively. If left parenthesis fraction numerator 15 over denominator A B end fraction right parenthesis to the power of 2 end exponent plus left parenthesis fraction numerator 10 over denominator A C end fraction right parenthesis to the power of 2 end exponent equals left parenthesis fraction numerator 6 over denominator A D end fraction right parenthesis to the power of 2 end exponent then the equation of the line is

    A line through A(-5, -4) meets the line x+3y+2=0, 2x+y+4=0 and x-y-5=0 at B comma C and D respectively. If left parenthesis fraction numerator 15 over denominator A B end fraction right parenthesis to the power of 2 end exponent plus left parenthesis fraction numerator 10 over denominator A C end fraction right parenthesis to the power of 2 end exponent equals left parenthesis fraction numerator 6 over denominator A D end fraction right parenthesis to the power of 2 end exponent then the equation of the line is

    Maths-General
    General
    Maths-

    If x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript as well as y subscript 1 end subscript comma y subscript 2 end subscript comma y subscript 3 end subscript are in G.P with the same common ratio, then the points left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis comma left parenthesis x subscript 3 end subscript comma y subscript 3 end subscript right parenthesis .

    If x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript as well as y subscript 1 end subscript comma y subscript 2 end subscript comma y subscript 3 end subscript are in G.P with the same common ratio, then the points left parenthesis x subscript 1 end subscript comma y subscript 1 end subscript right parenthesis comma left parenthesis x subscript 2 end subscript comma y subscript 2 end subscript right parenthesis comma left parenthesis x subscript 3 end subscript comma y subscript 3 end subscript right parenthesis .

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.