Maths-
General
Easy

Question

not stretchy integral fraction numerator d x over denominator sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x end fraction is equal to

  1. square root of 2 tan to the power of negative 1 end exponent invisible function application open parentheses square root of 2 tan invisible function application x close parentheses plus x plus c    
  2. square root of 2 tan to the power of negative 1 end exponent invisible function application open parentheses square root of 2 tan invisible function application x close parentheses minus x plus c    
  3. square root of 2 tan to the power of negative 1 end exponent invisible function application open parentheses 2 tan invisible function application x close parentheses plus c    
  4. none of these    

The correct answer is: square root of 2 tan to the power of negative 1 end exponent invisible function application open parentheses square root of 2 tan invisible function application x close parentheses minus x plus c


    not stretchy integral fraction numerator d x over denominator sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x end fraction
    equals not stretchy integral fraction numerator sec to the power of 2 end exponent invisible function application x minus tan to the power of 2 end exponent invisible function application x over denominator sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x end fraction d x equals not stretchy integral fraction numerator 2 sec to the power of 2 end exponent invisible function application x minus left parenthesis sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x right parenthesis over denominator sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x end fraction d x
    equals 2 not stretchy integral fraction numerator sec to the power of 2 end exponent invisible function application x over denominator sec to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x end fraction d x minus not stretchy integral d x equals 2 not stretchy integral fraction numerator sec to the power of 2 end exponent invisible function application x d x over denominator 1 plus 2 tan to the power of 2 end exponent invisible function application x end fraction minus x plus c
    equals not stretchy integral fraction numerator sec to the power of 2 end exponent invisible function application x d x over denominator fraction numerator 1 over denominator 2 end fraction plus tan to the power of 2 end exponent invisible function application x end fraction minus x plus c
    Put tan x = z\sec2x dx = dz
    \given integral equals not stretchy integral fraction numerator d z over denominator fraction numerator 1 over denominator 2 end fraction plus z to the power of 2 end exponent end fraction minus x plus c
    equals fraction numerator 1 over denominator fraction numerator 1 over denominator square root of 2 end fraction end fraction tan to the power of negative 1 end exponent invisible function application fraction numerator z over denominator fraction numerator 1 over denominator square root of 2 end fraction end fraction minus x plus c equals square root of 2 tan to the power of negative 1 end exponent invisible function application left parenthesis square root of 2 z right parenthesis minus x plus c
    equals square root of 2 tan to the power of negative 1 end exponent invisible function application open parentheses square root of 2 tan invisible function application x close parentheses minus x plus c

    Related Questions to study

    General
    Maths-

    Let f left parenthesis x right parenthesis equals not stretchy integral e to the power of x end exponent left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis d x. Then f decreases in the interval :

    Let f left parenthesis x right parenthesis equals not stretchy integral e to the power of x end exponent left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis d x. Then f decreases in the interval :

    Maths-General
    General
    Maths-

    The function f(x) = | px − q|+ r|x|, x element of left parenthesis negative infinity comma infinity right parenthesis,where p > 0, q > 0, r > 0, assumes its minimum value only at one point if :

    The function f(x) = | px − q|+ r|x|, x element of left parenthesis negative infinity comma infinity right parenthesis,where p > 0, q > 0, r > 0, assumes its minimum value only at one point if :

    Maths-General
    General
    Maths-

    The number of solutions of the equation x3 + 2x2 + 5x + 2 cos x = 0 in [0, 2pi ] is :

    The number of solutions of the equation x3 + 2x2 + 5x + 2 cos x = 0 in [0, 2pi ] is :

    Maths-General
    parallel
    General
    Maths-

    The distance between the origin and the normal to the curve y = e2x + x2 at the point x = 0 is :

    The distance between the origin and the normal to the curve y = e2x + x2 at the point x = 0 is :

    Maths-General
    General
    Maths-

    The function f(x) = (x2 − 1) |x2 − 3x + 2 | + cos | x |) is not differentiable at :

    The function f(x) = (x2 − 1) |x2 − 3x + 2 | + cos | x |) is not differentiable at :

    Maths-General
    General
    Maths-

    If xy yx = 1, then fraction numerator d y over denominator d x end fraction is :

    If xy yx = 1, then fraction numerator d y over denominator d x end fraction is :

    Maths-General
    parallel
    General
    Maths-

    If g(x) is a polynomial such that g(x) g(y) = g(x) + g(y) + g(xy) − 2 for all real x and y and g(2) = 5, then stack l i m with x rightwards arrow 2 below g ´ left parenthesis x right parenthesis is :

    If g(x) is a polynomial such that g(x) g(y) = g(x) + g(y) + g(xy) − 2 for all real x and y and g(2) = 5, then stack l i m with x rightwards arrow 2 below g ´ left parenthesis x right parenthesis is :

    Maths-General
    General
    Chemistry-

    CH subscript 3 CH equals CHCH subscript 3 plus KCl plus straight H subscript 2 straight ODehydrohalogenation reaction of 2-chlorobutane gives 2-butene.
    (R) Elimination reaction takes' place according to Saytzeff's rule.

    CH subscript 3 CH equals CHCH subscript 3 plus KCl plus straight H subscript 2 straight ODehydrohalogenation reaction of 2-chlorobutane gives 2-butene.
    (R) Elimination reaction takes' place according to Saytzeff's rule.

    Chemistry-General
    General
    Chemistry-


    (R) -CN is an ambident nucleophile, therefore, reaction gives both cyanide and isocyanide.


    (R) -CN is an ambident nucleophile, therefore, reaction gives both cyanide and isocyanide.

    Chemistry-General
    parallel
    General
    Chemistry-

    If 1,3-dibromopropane reacts with zinc and NaI, the product. obtained is : .

    If 1,3-dibromopropane reacts with zinc and NaI, the product. obtained is : .

    Chemistry-General
    General
    Chemistry-

    In the following reaction, .

    The major product obtained is :

    In the following reaction, .

    The major product obtained is :

    Chemistry-General
    General
    Chemistry-

    For the following reaction,

    product [A] is:

    For the following reaction,

    product [A] is:

    Chemistry-General
    parallel
    General
    Chemistry-

    When 2-chloro-2-methylbutane is heated with alcoholic KOH, the possible product/s is/are:
    i) open parentheses C H subscript 3 end subscript close parentheses subscript 2 end subscript C equals C H C H subscript 3 end subscript
    ii) H subscript 2 end subscript C equals stack C with bar on top open parentheses C H subscript 3 end subscript close parentheses stack C with bar on top H subscript 2 end subscript C H subscript 3 end subscript
    iii) open parentheses C H subscript 3 end subscript close parentheses subscript 2 end subscript C H C H equals C H subscript 2 end subscript

    When 2-chloro-2-methylbutane is heated with alcoholic KOH, the possible product/s is/are:
    i) open parentheses C H subscript 3 end subscript close parentheses subscript 2 end subscript C equals C H C H subscript 3 end subscript
    ii) H subscript 2 end subscript C equals stack C with bar on top open parentheses C H subscript 3 end subscript close parentheses stack C with bar on top H subscript 2 end subscript C H subscript 3 end subscript
    iii) open parentheses C H subscript 3 end subscript close parentheses subscript 2 end subscript C H C H equals C H subscript 2 end subscript

    Chemistry-General
    General
    Chemistry-

     (A) predominantly is:

     (A) predominantly is:

    Chemistry-General
    General
    Chemistry-

    Ethyl chloride on reduction with L i A l H subscript 4 end subscript gives compound , X' as an important product. 'X' on chlorination with one mole of Cl2 in the presence of light at ordinary temperature gives' Y'. What is 'Y' ?

    Ethyl chloride on reduction with L i A l H subscript 4 end subscript gives compound , X' as an important product. 'X' on chlorination with one mole of Cl2 in the presence of light at ordinary temperature gives' Y'. What is 'Y' ?

    Chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.