Maths-
General
Easy

Question

Let f open parentheses x close parentheses equals open curly brackets table row cell x plus 2 comma blank minus 1 less or equal than x less than 0 end cell row cell 1 comma blank x equals 0 blank end cell row cell fraction numerator x over denominator 2 end fraction comma blank 0 less than x less or equal than 1 end cell end table close Then on left square bracket negative 1 comma blank 1 right square bracket, this function has

  1. A minimum    
  2. A maximum    
  3. Either a maximum or a minimum    
  4. Neither a maximum nor a minimum    

The correct answer is: Neither a maximum nor a minimum


    f open parentheses 0 close parentheses greater than f left parenthesis 0 to the power of plus end exponent right parenthesis and f open parentheses 0 close parentheses less than f left parenthesis 0 to the power of minus end exponent right parenthesis, hence x equals 0 is neither a maximum nor a minimum

    Related Questions to study

    General
    Maths-

    If ϕ left parenthesis x right parenthesis is a polynomial function and ϕ to the power of ´ end exponent open parentheses x close parentheses greater than ϕ open parentheses x close parentheses comma blank for all blank x greater or equal than 1 and ϕ open parentheses 1 close parentheses equals 0, then

    If ϕ left parenthesis x right parenthesis is a polynomial function and ϕ to the power of ´ end exponent open parentheses x close parentheses greater than ϕ open parentheses x close parentheses comma blank for all blank x greater or equal than 1 and ϕ open parentheses 1 close parentheses equals 0, then

    Maths-General
    General
    Maths-

    If f open parentheses x close parentheses equals x plus sin invisible function application x semicolon g open parentheses x close parentheses equals e to the power of negative x end exponent semicolon u equals square root of c plus 1 end root minus square root of c semicolon v equals square root of c minus square root of c minus 1 end root semicolon left parenthesis c greater than 1 right parenthesis, then

    If f open parentheses x close parentheses equals x plus sin invisible function application x semicolon g open parentheses x close parentheses equals e to the power of negative x end exponent semicolon u equals square root of c plus 1 end root minus square root of c semicolon v equals square root of c minus square root of c minus 1 end root semicolon left parenthesis c greater than 1 right parenthesis, then

    Maths-General
    General
    Maths-

    The value of c in Lagrange’s theorem for the function f open parentheses x close parentheses equals log invisible function application sin invisible function application x in the interval left square bracket divided by 6 comma blank 5 divided by 6 right square bracket

    The value of c in Lagrange’s theorem for the function f open parentheses x close parentheses equals log invisible function application sin invisible function application x in the interval left square bracket divided by 6 comma blank 5 divided by 6 right square bracket

    Maths-General
    parallel
    General
    Maths-

    Let f left parenthesis x right parenthesis be a function such that f to the power of ´ end exponent open parentheses x close parentheses equals log subscript 1 divided by 3 end subscript invisible function application left square bracket log subscript 3 end subscript invisible function application left parenthesis sin invisible function application x plus a right parenthesis right square bracket. If f left parenthesis x right parenthesis is decreasing for all real values of x, then

    Let f left parenthesis x right parenthesis be a function such that f to the power of ´ end exponent open parentheses x close parentheses equals log subscript 1 divided by 3 end subscript invisible function application left square bracket log subscript 3 end subscript invisible function application left parenthesis sin invisible function application x plus a right parenthesis right square bracket. If f left parenthesis x right parenthesis is decreasing for all real values of x, then

    Maths-General
    General
    Maths-

    The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30 degree is

    The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30 degree is

    Maths-General
    General
    Maths-

    Consider the system of equation x plus y plus z equals 6 comma blank x plus 2 y plus 3 z equals 10 and x plus 2 y plus lambda z equals mu
    Statement 1 If the system has infinite number of solutions, then mu equals 10
    Statement 2: The determinant open vertical bar table row 1 1 6 row 1 2 10 row 1 2 mu end table close vertical bar equals 0 for mu equals 10

    Consider the system of equation x plus y plus z equals 6 comma blank x plus 2 y plus 3 z equals 10 and x plus 2 y plus lambda z equals mu
    Statement 1 If the system has infinite number of solutions, then mu equals 10
    Statement 2: The determinant open vertical bar table row 1 1 6 row 1 2 10 row 1 2 mu end table close vertical bar equals 0 for mu equals 10

    Maths-General
    parallel
    General
    Maths-

    If p q r not equal to 0 and the system of equationsblank open parentheses p plus a close parentheses x plus b y plus c z equals 0 a x plus open parentheses q plus b close parentheses y plus c z equals 0 a x plus b y plus open parentheses r plus c close parentheses z equals 0 Has a non-trivial solution, then value of fraction numerator a over denominator p end fraction plus fraction numerator b over denominator q end fraction plus fraction numerator c over denominator r end fraction is

    If p q r not equal to 0 and the system of equationsblank open parentheses p plus a close parentheses x plus b y plus c z equals 0 a x plus open parentheses q plus b close parentheses y plus c z equals 0 a x plus b y plus open parentheses r plus c close parentheses z equals 0 Has a non-trivial solution, then value of fraction numerator a over denominator p end fraction plus fraction numerator b over denominator q end fraction plus fraction numerator c over denominator r end fraction is

    Maths-General
    General
    Maths-

    If a comma blank b comma blank c are non-zeros, then the system of equationsopen parentheses alpha plus a close parentheses x plus alpha y plus alpha z equals 0 comma blank alpha x plus open parentheses alpha plus b close parentheses y plus alpha z equals 0 comma alpha x plus alpha y plus open parentheses alpha plus c close parentheses z equals 0 has a non-trivial solution if

    If a comma blank b comma blank c are non-zeros, then the system of equationsopen parentheses alpha plus a close parentheses x plus alpha y plus alpha z equals 0 comma blank alpha x plus open parentheses alpha plus b close parentheses y plus alpha z equals 0 comma alpha x plus alpha y plus open parentheses alpha plus c close parentheses z equals 0 has a non-trivial solution if

    Maths-General
    General
    Maths-

    increment subscript 1 end subscript equals open vertical bar table row cell y to the power of 5 end exponent z to the power of 6 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent z to the power of 6 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent y to the power of 5 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis y to the power of 6 end exponent minus z to the power of 6 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis z to the power of 6 end exponent minus x to the power of 6 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis x to the power of 6 end exponent minus y to the power of 6 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell end table close vertical barandincrement subscript 2 end subscript equals open vertical bar table row x cell y to the power of 2 end exponent end cell cell z to the power of 3 end exponent end cell row cell x to the power of 4 end exponent end cell cell y to the power of 5 end exponent end cell cell z to the power of 6 end exponent end cell row cell x to the power of 7 end exponent end cell cell y to the power of 8 end exponent end cell cell z to the power of 9 end exponent end cell end table close vertical bar. Then increment subscript 1 end subscript increment subscript 2 end subscript is equal to

    increment subscript 1 end subscript equals open vertical bar table row cell y to the power of 5 end exponent z to the power of 6 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent z to the power of 6 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent y to the power of 5 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis y to the power of 6 end exponent minus z to the power of 6 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis z to the power of 6 end exponent minus x to the power of 6 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis x to the power of 6 end exponent minus y to the power of 6 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell end table close vertical barandincrement subscript 2 end subscript equals open vertical bar table row x cell y to the power of 2 end exponent end cell cell z to the power of 3 end exponent end cell row cell x to the power of 4 end exponent end cell cell y to the power of 5 end exponent end cell cell z to the power of 6 end exponent end cell row cell x to the power of 7 end exponent end cell cell y to the power of 8 end exponent end cell cell z to the power of 9 end exponent end cell end table close vertical bar. Then increment subscript 1 end subscript increment subscript 2 end subscript is equal to

    Maths-General
    parallel
    General
    Maths-

    The system of equations a x minus y minus z equals alpha minus 1 x minus alpha y minus z equals alpha minus 1 x minus y minus alpha z equals alpha minus 1 Has no solution if alpha is

    The system of equations a x minus y minus z equals alpha minus 1 x minus alpha y minus z equals alpha minus 1 x minus y minus alpha z equals alpha minus 1 Has no solution if alpha is

    Maths-General
    General
    Maths-

    The value of the determinant open vertical bar table row 1 1 1 row cell blank to the power of m end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 1 end subscript end cell row cell blank to the power of m end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 2 end subscript end cell end table close vertical bar is equal to

    The value of the determinant open vertical bar table row 1 1 1 row cell blank to the power of m end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 1 end subscript end cell row cell blank to the power of m end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 2 end subscript end cell end table close vertical bar is equal to

    Maths-General
    General
    Maths-

    If alpha comma blank beta comma blank gamma are the angles of a triangle and the system of equationscos invisible function application open parentheses alpha minus beta close parentheses x plus cos invisible function application open parentheses beta minus gamma close parentheses y plus cos invisible function application open parentheses gamma minus alpha close parentheses z equals 0 cos invisible function application open parentheses alpha plus beta close parentheses x plus cos invisible function application open parentheses beta plus gamma close parentheses y plus cos invisible function application open parentheses gamma plus alpha close parentheses z equals 0 sin invisible function application open parentheses alpha plus beta close parentheses x plus sin invisible function application open parentheses beta plus gamma close parentheses y plus sin invisible function application open parentheses gamma plus alpha close parentheses z equals 0Has non-trivial solutions, then triangle is necessarily

    If alpha comma blank beta comma blank gamma are the angles of a triangle and the system of equationscos invisible function application open parentheses alpha minus beta close parentheses x plus cos invisible function application open parentheses beta minus gamma close parentheses y plus cos invisible function application open parentheses gamma minus alpha close parentheses z equals 0 cos invisible function application open parentheses alpha plus beta close parentheses x plus cos invisible function application open parentheses beta plus gamma close parentheses y plus cos invisible function application open parentheses gamma plus alpha close parentheses z equals 0 sin invisible function application open parentheses alpha plus beta close parentheses x plus sin invisible function application open parentheses beta plus gamma close parentheses y plus sin invisible function application open parentheses gamma plus alpha close parentheses z equals 0Has non-trivial solutions, then triangle is necessarily

    Maths-General
    parallel
    General
    Maths-

    If x not equal to y not equal to z and open vertical bar table row x cell x to the power of 2 end exponent end cell cell 1 plus x to the power of 3 end exponent end cell row y cell y to the power of 2 end exponent end cell cell 1 plus y to the power of 3 end exponent end cell row z cell z to the power of 2 end exponent end cell cell 1 plus z to the power of 3 end exponent end cell end table close vertical bar equals 0, then the value of x y z is

    If x not equal to y not equal to z and open vertical bar table row x cell x to the power of 2 end exponent end cell cell 1 plus x to the power of 3 end exponent end cell row y cell y to the power of 2 end exponent end cell cell 1 plus y to the power of 3 end exponent end cell row z cell z to the power of 2 end exponent end cell cell 1 plus z to the power of 3 end exponent end cell end table close vertical bar equals 0, then the value of x y z is

    Maths-General
    General
    Maths-

    If f open parentheses x close parentheses equals a plus b x plus c x to the power of 2 end exponent and alpha comma blank beta comma blank gamma are the roots of the equationx to the power of 3 end exponent equals 1, then open vertical bar table row a b c row b c a row c a b end table close vertical bar is equal to

    If f open parentheses x close parentheses equals a plus b x plus c x to the power of 2 end exponent and alpha comma blank beta comma blank gamma are the roots of the equationx to the power of 3 end exponent equals 1, then open vertical bar table row a b c row b c a row c a b end table close vertical bar is equal to

    Maths-General
    General
    Maths-

    If A equals open square brackets table row alpha 2 row 2 alpha end table close square bracketsand open vertical bar A to the power of 3 end exponent close vertical bar equals 125 comma blankthen the value of alphais

    If A equals open square brackets table row alpha 2 row 2 alpha end table close square bracketsand open vertical bar A to the power of 3 end exponent close vertical bar equals 125 comma blankthen the value of alphais

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.