Maths-
General
Easy

Question

The fuel charges for running a train are proportional to the square of the speed generated in km per hour, and the cost is Rs. 48 at 16 km per hour. If the fixed charges amount to Rs. 300 per hour, the most economical speed is

  1. 60 kmph    
  2. 40 kmph    
  3. 48 kmph    
  4. 36 kmph    

The correct answer is: 40 kmph


    because blankFuel charges proportional to v to the power of 2 end exponent. Let F represents fuel charges
    rightwards double arrow F proportional to v to the power of n end exponent rightwards double arrow F equals k v to the power of 2 end exponent (1)
    Given that F equalsRs. 48 per hour, v equals 16 km per hour
    rightwards double arrow 48 equals k open parentheses 16 close parentheses to the power of 2 end exponent rightwards double arrow k equals fraction numerator 3 over denominator 16 end fraction
    From (1), F equals fraction numerator 3 v to the power of 2 end exponent over denominator 16 end fraction
    Let the train covers lambda km in t hours
    rightwards double arrow lambda equals v t or t equals fraction numerator lambda over denominator v end fraction
    rightwards double arrow Fuel charges in time t equals fraction numerator 3 over denominator 16 end fraction v to the power of 2 end exponent cross times fraction numerator lambda over denominator v end fraction equals fraction numerator 3 v lambda over denominator 16 end fraction
    rightwards double arrow Total cost for running the train,
    C equals fraction numerator 3 v lambda over denominator 16 end fraction plus 300 cross times fraction numerator lambda over denominator v end fraction
    rightwards double arrow fraction numerator d C over denominator d v end fraction equals fraction numerator 3 lambda over denominator 16 end fraction minus fraction numerator 300 lambda over denominator v to the power of 2 end exponent end fraction and fraction numerator d to the power of 2 end exponent C over denominator d v to the power of 2 end exponent end fraction equals fraction numerator 600 lambda over denominator v to the power of 3 end exponent end fraction
    For the maximum or minimum value of C comma fraction numerator d C over denominator d v end fraction equals 0
    rightwards double arrow v equals 40 blank k m divided by h r. Also, open fraction numerator d to the power of 2 end exponent C over denominator d v to the power of 2 end exponent end fraction close vertical bar subscript v equals 40 end subscript equals fraction numerator 60 lambda over denominator open parentheses 40 close parentheses to the power of 3 end exponent end fraction greater than 0 blank left parenthesis because blank lambda greater than 0 right parenthesis
    rightwards double arrow C is minimum when v equals 40 blank k m divided by h r

    Related Questions to study

    General
    Maths-

    Suppose that f is a polynomial of degree 3 and that f to the power of ´ ´ end exponent left parenthesis x right parenthesis not equal to 0 at any of the stationary point. Then

    Suppose that f is a polynomial of degree 3 and that f to the power of ´ ´ end exponent left parenthesis x right parenthesis not equal to 0 at any of the stationary point. Then

    Maths-General
    General
    Maths-

    Let f open parentheses x close parentheses equals cos invisible function application pi x plus 10 x plus 3 x to the power of 2 end exponent plus x to the power of 3 end exponent comma blank minus 2 less or equal than x less or equal than 3. The absolute minimum value of f left parenthesis x right parenthesis is

    Let f open parentheses x close parentheses equals cos invisible function application pi x plus 10 x plus 3 x to the power of 2 end exponent plus x to the power of 3 end exponent comma blank minus 2 less or equal than x less or equal than 3. The absolute minimum value of f left parenthesis x right parenthesis is

    Maths-General
    General
    Maths-

    Let f open parentheses x close parentheses equals open curly brackets table row cell x plus 2 comma blank minus 1 less or equal than x less than 0 end cell row cell 1 comma blank x equals 0 blank end cell row cell fraction numerator x over denominator 2 end fraction comma blank 0 less than x less or equal than 1 end cell end table close Then on left square bracket negative 1 comma blank 1 right square bracket, this function has

    Let f open parentheses x close parentheses equals open curly brackets table row cell x plus 2 comma blank minus 1 less or equal than x less than 0 end cell row cell 1 comma blank x equals 0 blank end cell row cell fraction numerator x over denominator 2 end fraction comma blank 0 less than x less or equal than 1 end cell end table close Then on left square bracket negative 1 comma blank 1 right square bracket, this function has

    Maths-General
    parallel
    General
    Maths-

    If ϕ left parenthesis x right parenthesis is a polynomial function and ϕ to the power of ´ end exponent open parentheses x close parentheses greater than ϕ open parentheses x close parentheses comma blank for all blank x greater or equal than 1 and ϕ open parentheses 1 close parentheses equals 0, then

    If ϕ left parenthesis x right parenthesis is a polynomial function and ϕ to the power of ´ end exponent open parentheses x close parentheses greater than ϕ open parentheses x close parentheses comma blank for all blank x greater or equal than 1 and ϕ open parentheses 1 close parentheses equals 0, then

    Maths-General
    General
    Maths-

    If f open parentheses x close parentheses equals x plus sin invisible function application x semicolon g open parentheses x close parentheses equals e to the power of negative x end exponent semicolon u equals square root of c plus 1 end root minus square root of c semicolon v equals square root of c minus square root of c minus 1 end root semicolon left parenthesis c greater than 1 right parenthesis, then

    If f open parentheses x close parentheses equals x plus sin invisible function application x semicolon g open parentheses x close parentheses equals e to the power of negative x end exponent semicolon u equals square root of c plus 1 end root minus square root of c semicolon v equals square root of c minus square root of c minus 1 end root semicolon left parenthesis c greater than 1 right parenthesis, then

    Maths-General
    General
    Maths-

    The value of c in Lagrange’s theorem for the function f open parentheses x close parentheses equals log invisible function application sin invisible function application x in the interval left square bracket divided by 6 comma blank 5 divided by 6 right square bracket

    The value of c in Lagrange’s theorem for the function f open parentheses x close parentheses equals log invisible function application sin invisible function application x in the interval left square bracket divided by 6 comma blank 5 divided by 6 right square bracket

    Maths-General
    parallel
    General
    Maths-

    Let f left parenthesis x right parenthesis be a function such that f to the power of ´ end exponent open parentheses x close parentheses equals log subscript 1 divided by 3 end subscript invisible function application left square bracket log subscript 3 end subscript invisible function application left parenthesis sin invisible function application x plus a right parenthesis right square bracket. If f left parenthesis x right parenthesis is decreasing for all real values of x, then

    Let f left parenthesis x right parenthesis be a function such that f to the power of ´ end exponent open parentheses x close parentheses equals log subscript 1 divided by 3 end subscript invisible function application left square bracket log subscript 3 end subscript invisible function application left parenthesis sin invisible function application x plus a right parenthesis right square bracket. If f left parenthesis x right parenthesis is decreasing for all real values of x, then

    Maths-General
    General
    Maths-

    The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30 degree is

    The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30 degree is

    Maths-General
    General
    Maths-

    Consider the system of equation x plus y plus z equals 6 comma blank x plus 2 y plus 3 z equals 10 and x plus 2 y plus lambda z equals mu
    Statement 1 If the system has infinite number of solutions, then mu equals 10
    Statement 2: The determinant open vertical bar table row 1 1 6 row 1 2 10 row 1 2 mu end table close vertical bar equals 0 for mu equals 10

    Consider the system of equation x plus y plus z equals 6 comma blank x plus 2 y plus 3 z equals 10 and x plus 2 y plus lambda z equals mu
    Statement 1 If the system has infinite number of solutions, then mu equals 10
    Statement 2: The determinant open vertical bar table row 1 1 6 row 1 2 10 row 1 2 mu end table close vertical bar equals 0 for mu equals 10

    Maths-General
    parallel
    General
    Maths-

    If p q r not equal to 0 and the system of equationsblank open parentheses p plus a close parentheses x plus b y plus c z equals 0 a x plus open parentheses q plus b close parentheses y plus c z equals 0 a x plus b y plus open parentheses r plus c close parentheses z equals 0 Has a non-trivial solution, then value of fraction numerator a over denominator p end fraction plus fraction numerator b over denominator q end fraction plus fraction numerator c over denominator r end fraction is

    If p q r not equal to 0 and the system of equationsblank open parentheses p plus a close parentheses x plus b y plus c z equals 0 a x plus open parentheses q plus b close parentheses y plus c z equals 0 a x plus b y plus open parentheses r plus c close parentheses z equals 0 Has a non-trivial solution, then value of fraction numerator a over denominator p end fraction plus fraction numerator b over denominator q end fraction plus fraction numerator c over denominator r end fraction is

    Maths-General
    General
    Maths-

    If a comma blank b comma blank c are non-zeros, then the system of equationsopen parentheses alpha plus a close parentheses x plus alpha y plus alpha z equals 0 comma blank alpha x plus open parentheses alpha plus b close parentheses y plus alpha z equals 0 comma alpha x plus alpha y plus open parentheses alpha plus c close parentheses z equals 0 has a non-trivial solution if

    If a comma blank b comma blank c are non-zeros, then the system of equationsopen parentheses alpha plus a close parentheses x plus alpha y plus alpha z equals 0 comma blank alpha x plus open parentheses alpha plus b close parentheses y plus alpha z equals 0 comma alpha x plus alpha y plus open parentheses alpha plus c close parentheses z equals 0 has a non-trivial solution if

    Maths-General
    General
    Maths-

    increment subscript 1 end subscript equals open vertical bar table row cell y to the power of 5 end exponent z to the power of 6 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent z to the power of 6 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent y to the power of 5 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis y to the power of 6 end exponent minus z to the power of 6 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis z to the power of 6 end exponent minus x to the power of 6 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis x to the power of 6 end exponent minus y to the power of 6 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell end table close vertical barandincrement subscript 2 end subscript equals open vertical bar table row x cell y to the power of 2 end exponent end cell cell z to the power of 3 end exponent end cell row cell x to the power of 4 end exponent end cell cell y to the power of 5 end exponent end cell cell z to the power of 6 end exponent end cell row cell x to the power of 7 end exponent end cell cell y to the power of 8 end exponent end cell cell z to the power of 9 end exponent end cell end table close vertical bar. Then increment subscript 1 end subscript increment subscript 2 end subscript is equal to

    increment subscript 1 end subscript equals open vertical bar table row cell y to the power of 5 end exponent z to the power of 6 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent z to the power of 6 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x to the power of 4 end exponent y to the power of 5 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis y to the power of 6 end exponent minus z to the power of 6 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis z to the power of 6 end exponent minus x to the power of 6 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis x to the power of 6 end exponent minus y to the power of 6 end exponent right parenthesis end cell row cell y to the power of 2 end exponent z to the power of 3 end exponent left parenthesis z to the power of 3 end exponent minus y to the power of 3 end exponent right parenthesis end cell cell x z to the power of 3 end exponent left parenthesis x to the power of 3 end exponent minus z to the power of 3 end exponent right parenthesis end cell cell x y to the power of 2 end exponent left parenthesis y to the power of 3 end exponent minus x to the power of 3 end exponent right parenthesis end cell end table close vertical barandincrement subscript 2 end subscript equals open vertical bar table row x cell y to the power of 2 end exponent end cell cell z to the power of 3 end exponent end cell row cell x to the power of 4 end exponent end cell cell y to the power of 5 end exponent end cell cell z to the power of 6 end exponent end cell row cell x to the power of 7 end exponent end cell cell y to the power of 8 end exponent end cell cell z to the power of 9 end exponent end cell end table close vertical bar. Then increment subscript 1 end subscript increment subscript 2 end subscript is equal to

    Maths-General
    parallel
    General
    Maths-

    The system of equations a x minus y minus z equals alpha minus 1 x minus alpha y minus z equals alpha minus 1 x minus y minus alpha z equals alpha minus 1 Has no solution if alpha is

    The system of equations a x minus y minus z equals alpha minus 1 x minus alpha y minus z equals alpha minus 1 x minus y minus alpha z equals alpha minus 1 Has no solution if alpha is

    Maths-General
    General
    Maths-

    The value of the determinant open vertical bar table row 1 1 1 row cell blank to the power of m end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 1 end subscript end cell row cell blank to the power of m end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 2 end subscript end cell end table close vertical bar is equal to

    The value of the determinant open vertical bar table row 1 1 1 row cell blank to the power of m end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 1 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 1 end subscript end cell row cell blank to the power of m end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 1 end exponent C subscript 2 end subscript end cell cell blank to the power of m plus 2 end exponent C subscript 2 end subscript end cell end table close vertical bar is equal to

    Maths-General
    General
    Maths-

    If alpha comma blank beta comma blank gamma are the angles of a triangle and the system of equationscos invisible function application open parentheses alpha minus beta close parentheses x plus cos invisible function application open parentheses beta minus gamma close parentheses y plus cos invisible function application open parentheses gamma minus alpha close parentheses z equals 0 cos invisible function application open parentheses alpha plus beta close parentheses x plus cos invisible function application open parentheses beta plus gamma close parentheses y plus cos invisible function application open parentheses gamma plus alpha close parentheses z equals 0 sin invisible function application open parentheses alpha plus beta close parentheses x plus sin invisible function application open parentheses beta plus gamma close parentheses y plus sin invisible function application open parentheses gamma plus alpha close parentheses z equals 0Has non-trivial solutions, then triangle is necessarily

    If alpha comma blank beta comma blank gamma are the angles of a triangle and the system of equationscos invisible function application open parentheses alpha minus beta close parentheses x plus cos invisible function application open parentheses beta minus gamma close parentheses y plus cos invisible function application open parentheses gamma minus alpha close parentheses z equals 0 cos invisible function application open parentheses alpha plus beta close parentheses x plus cos invisible function application open parentheses beta plus gamma close parentheses y plus cos invisible function application open parentheses gamma plus alpha close parentheses z equals 0 sin invisible function application open parentheses alpha plus beta close parentheses x plus sin invisible function application open parentheses beta plus gamma close parentheses y plus sin invisible function application open parentheses gamma plus alpha close parentheses z equals 0Has non-trivial solutions, then triangle is necessarily

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.