Maths-
General
Easy

Question

The length of intercept on y– axis, by a circle whose diameter is the line joining the points (–4, 3) and (12, –1) is -

  1. 2square root of 13    
  2. square root of 13    
  3. 4square root of 13    
  4. None of these    

The correct answer is: 4square root of 13


    Here equation of the circle
    (x+ 4) (x – 12) + (y – 3) (y+ 1) = 0
    or x2 + y2 – 8x – 2y – 51 = 0
    Hence intercept on y– axis
    = 2square root of f to the power of 2 end exponent minus c end root= 2square root of 1 minus left parenthesis negative 51 right parenthesis end root=4 square root of 13

    Related Questions to study

    General
    Maths-

    The number of common tangents that can be drawn to the circles x2 + y2 – 4x – 6y – 3 = 0 and x2 + y2 + 2x + 2y + 1 = 0 is

    The number of common tangents that can be drawn to the circles x2 + y2 – 4x – 6y – 3 = 0 and x2 + y2 + 2x + 2y + 1 = 0 is

    Maths-General
    General
    Maths-

    Statement I : blank to the power of 21 end exponent C subscript 0 end subscript plus blank to the power of 21 end exponent C subscript 1 end subscript plus horizontal ellipsis plus blank to the power of 21 end exponent C subscript 10 end subscript equals 2 to the power of 20 end exponentbecause
    Statement II : blank to the power of 2 n plus 1 end exponent C subscript 0 end subscript plus blank to the power of 2 n plus 1 end exponent C subscript 1 end subscript plus horizontal ellipsis to the power of 2 n plus 1 end exponent C subscript 2 n plus 1 end subscript equals 2 to the power of 2 n plus 1 end exponentand nCr = nCn r

    Statement I : blank to the power of 21 end exponent C subscript 0 end subscript plus blank to the power of 21 end exponent C subscript 1 end subscript plus horizontal ellipsis plus blank to the power of 21 end exponent C subscript 10 end subscript equals 2 to the power of 20 end exponentbecause
    Statement II : blank to the power of 2 n plus 1 end exponent C subscript 0 end subscript plus blank to the power of 2 n plus 1 end exponent C subscript 1 end subscript plus horizontal ellipsis to the power of 2 n plus 1 end exponent C subscript 2 n plus 1 end subscript equals 2 to the power of 2 n plus 1 end exponentand nCr = nCn r

    Maths-General
    General
    Maths-

    If Cr denotes the combinatorial coefficient in the expansion of (1 + x)n then (nN
    Statement 1: left parenthesis n plus 1 right parenthesis open parentheses C subscript 0 end subscript superscript 2 end superscript plus C subscript 1 end subscript superscript 2 end superscript plus C subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus C subscript n end subscript superscript 2 end superscript close parentheses greater than open parentheses C subscript 0 end subscript plus C subscript 1 end subscript plus C subscript 2 end subscript plus horizontal ellipsis plus C subscript n end subscript close parentheses to the power of 2 end exponent for all n greater or equal than 2 comma n element of Nbecause
    Statement 2: Root mean square of n distinct real numbers is always greater than their arithmetic mean, n ≥ 2

    If Cr denotes the combinatorial coefficient in the expansion of (1 + x)n then (nN
    Statement 1: left parenthesis n plus 1 right parenthesis open parentheses C subscript 0 end subscript superscript 2 end superscript plus C subscript 1 end subscript superscript 2 end superscript plus C subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus C subscript n end subscript superscript 2 end superscript close parentheses greater than open parentheses C subscript 0 end subscript plus C subscript 1 end subscript plus C subscript 2 end subscript plus horizontal ellipsis plus C subscript n end subscript close parentheses to the power of 2 end exponent for all n greater or equal than 2 comma n element of Nbecause
    Statement 2: Root mean square of n distinct real numbers is always greater than their arithmetic mean, n ≥ 2

    Maths-General
    parallel
    General
    Maths-

    The sum stretchy sum from k equals 1 to n minus gamma plus 1 of   k to the power of n minus k end exponent C subscript gamma minus 1 end subscriptis equal to

    The sum stretchy sum from k equals 1 to n minus gamma plus 1 of   k to the power of n minus k end exponent C subscript gamma minus 1 end subscriptis equal to

    Maths-General
    General
    Maths-

    stretchy sum from i equals 0 to n of   stretchy sum from j equals 0 to n of   stretchy sum from k equals 0 to n of   open parentheses fraction numerator n over denominator i end fraction close parentheses open parentheses fraction numerator n over denominator k end fraction close parentheses comma open parentheses fraction numerator n over denominator r end fraction close parentheses equals blank to the power of n end exponent C subscript r end subscript

    stretchy sum from i equals 0 to n of   stretchy sum from j equals 0 to n of   stretchy sum from k equals 0 to n of   open parentheses fraction numerator n over denominator i end fraction close parentheses open parentheses fraction numerator n over denominator k end fraction close parentheses comma open parentheses fraction numerator n over denominator r end fraction close parentheses equals blank to the power of n end exponent C subscript r end subscript

    Maths-General
    General
    Maths-

    The expression open parentheses table row cell n end cell row cell k end cell end table close parentheses plus open parentheses table row cell n end cell row cell k plus 1 end cell end table close parentheseswhere n greater or equal than k greater or equal than 1is the same as

    The expression open parentheses table row cell n end cell row cell k end cell end table close parentheses plus open parentheses table row cell n end cell row cell k plus 1 end cell end table close parentheseswhere n greater or equal than k greater or equal than 1is the same as

    Maths-General
    parallel
    General
    Chemistry-

    Which of the following pairof ions cannot beseparated by H2Sindilute HCl?

    Which of the following pairof ions cannot beseparated by H2Sindilute HCl?

    Chemistry-General
    General
    Chemistry-

    Thpairofcom pounds which cannot exist together in solution is:

    Thpairofcom pounds which cannot exist together in solution is:

    Chemistry-General
    General
    Maths-

    If the greatest value of the term independent of x in expansion of open parentheses x s i n invisible function application p plus x to the power of negative 1 end exponent c o s invisible function application p close parentheses to the power of 10 end exponentis achieved at P equals thetaThen the locus of point from which pair of tangents be drawn to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4including an angle thetais

    If the greatest value of the term independent of x in expansion of open parentheses x s i n invisible function application p plus x to the power of negative 1 end exponent c o s invisible function application p close parentheses to the power of 10 end exponentis achieved at P equals thetaThen the locus of point from which pair of tangents be drawn to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4including an angle thetais

    Maths-General
    parallel
    General
    Maths-

    The sum of the series fraction numerator 5 over denominator 1.4 to the power of 2 end exponent end fraction plus fraction numerator 11 over denominator 4 to the power of 2 end exponent times 7 to the power of 2 end exponent end fraction plus fraction numerator 17 over denominator 7 to the power of 2 end exponent times 10 to the power of 2 end exponent end fraction plus horizontal ellipsis.. plusis equal to

    The sum of the series fraction numerator 5 over denominator 1.4 to the power of 2 end exponent end fraction plus fraction numerator 11 over denominator 4 to the power of 2 end exponent times 7 to the power of 2 end exponent end fraction plus fraction numerator 17 over denominator 7 to the power of 2 end exponent times 10 to the power of 2 end exponent end fraction plus horizontal ellipsis.. plusis equal to

    Maths-General

    In the expansion of open parentheses x plus x to the power of 2 end exponent plus horizontal ellipsis horizontal ellipsis.. close parentheses open parentheses 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent close parentheses open parentheses x to the power of 2 end exponent plus horizontal ellipsis horizontal ellipsis. plus x to the power of 10 end exponent close parenthesesthe coefficient of is

    Maths-General
    General
    Maths-

    Statement 1:The coefficient of x to the power of n end exponent in the binomial expansion of left parenthesis 1 minus x right parenthesis to the power of negative 2 end exponent is left parenthesis n plus 1 right parenthesis
    Statement 2:The coefficient of x to the power of r end exponent in left parenthesis 1 minus x right parenthesis to the power of negative n end exponent when n element of N is blank to the power of n plus r minus 1 end exponent C subscript r end subscript

    Statement 1:The coefficient of x to the power of n end exponent in the binomial expansion of left parenthesis 1 minus x right parenthesis to the power of negative 2 end exponent is left parenthesis n plus 1 right parenthesis
    Statement 2:The coefficient of x to the power of r end exponent in left parenthesis 1 minus x right parenthesis to the power of negative n end exponent when n element of N is blank to the power of n plus r minus 1 end exponent C subscript r end subscript

    Maths-General
    parallel
    General
    Maths-

    If the left parenthesis r plus 1 right parenthesisth term in the expansion of open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction plus fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 end exponenthas equal exponents of both a and b, then value of r is

    If the left parenthesis r plus 1 right parenthesisth term in the expansion of open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction plus fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 end exponenthas equal exponents of both a and b, then value of r is

    Maths-General
    General
    Maths-

    If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

    If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

    Maths-General
    General
    Maths-

    The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

    The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.