Physics-
General
Easy
Question
The figure shows certain wire segments joined together to form a coplanar loop. The loop is placed in a perpendicular magnetic field in the direction going into the plane of the figure. The magnitude of the field increases with time. and are the currents in the segments ab and cd. Then,
-
-
- is in the direction BA and is in the direction CD
- is in the direction AB and is in the direction DC
The correct answer is: is in the direction AB and is in the direction DC
Related Questions to study
physics-
Statement -1 A vertical iron rod has a coil of wire wound over it at the bottom end. An alternating current flows in the coil. The rod goes through a conducting ring as shown in the figure. The ring can float at a certain height above the coil.
Statement - 2 In the above situation, a current is induced in the ring which interacts with the horizontal component of the magnetic field to produce an average force in the upward direction
Statement -1 A vertical iron rod has a coil of wire wound over it at the bottom end. An alternating current flows in the coil. The rod goes through a conducting ring as shown in the figure. The ring can float at a certain height above the coil.
Statement - 2 In the above situation, a current is induced in the ring which interacts with the horizontal component of the magnetic field to produce an average force in the upward direction
physics-General
physics-
Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value to zero as their temperature is lowered below a critical temperature (0). An interesting property of superconductors is that their critical temperature becomes smaller than (0) if they are placed in a magnetic field, i.e., the critical temperature (B) is a function of the magnetic field strength B. The dependence of (B) on B is shown in the figure
A superconductor has (0) = 100 K. When a magnetic field of 7.5 Tesla is applied, its decreases to 75 K. For this material one can definitely say that when :
Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value to zero as their temperature is lowered below a critical temperature (0). An interesting property of superconductors is that their critical temperature becomes smaller than (0) if they are placed in a magnetic field, i.e., the critical temperature (B) is a function of the magnetic field strength B. The dependence of (B) on B is shown in the figure
A superconductor has (0) = 100 K. When a magnetic field of 7.5 Tesla is applied, its decreases to 75 K. For this material one can definitely say that when :
physics-General
physics-
Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value to zero as their temperature is lowered below a critical temperature (0). An interesting property of superconductors is that their critical temperature becomes smaller than (0) if they are placed in a magnetic field, i.e., the critical temperature (B) is a function of the magnetic field strength B. The dependence of (B) on B is shown in the figure
In the graphs below, the resistance R of a superconductor is shown as a function of its temperature T for two different magnetic fields (solid line) and (dashed line). If is larger than , which of the following graphs shows the correct variation of R with T in these fields?
Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value to zero as their temperature is lowered below a critical temperature (0). An interesting property of superconductors is that their critical temperature becomes smaller than (0) if they are placed in a magnetic field, i.e., the critical temperature (B) is a function of the magnetic field strength B. The dependence of (B) on B is shown in the figure
In the graphs below, the resistance R of a superconductor is shown as a function of its temperature T for two different magnetic fields (solid line) and (dashed line). If is larger than , which of the following graphs shows the correct variation of R with T in these fields?
physics-General
physics-
The capacitor of capacitance C can be charged (with the help of a resistance R) by a voltage source V, by closing switch while keeping switch open. The capacitor can be connected in series with an inductor ‘L’ by closing switch and opening .
After the capacitor gets fully charged, is opened and is closed so that the inductor is connected in series with the capacitor. Then,
The capacitor of capacitance C can be charged (with the help of a resistance R) by a voltage source V, by closing switch while keeping switch open. The capacitor can be connected in series with an inductor ‘L’ by closing switch and opening .
After the capacitor gets fully charged, is opened and is closed so that the inductor is connected in series with the capacitor. Then,
physics-General
physics-
The capacitor of capacitance C can be charged (with the help of a resistance R) by a voltage source V, by closing switch while keeping switch open. The capacitor can be connected in series with an inductor ‘L’ by closing switch and opening .
Initially, the capacitor was uncharged. Now, switch is closed and is kept open. If time constant of this circuit is , then
The capacitor of capacitance C can be charged (with the help of a resistance R) by a voltage source V, by closing switch while keeping switch open. The capacitor can be connected in series with an inductor ‘L’ by closing switch and opening .
Initially, the capacitor was uncharged. Now, switch is closed and is kept open. If time constant of this circuit is , then
physics-General
physics-
An inductor (L = 0.03H) and a resistor (R = 0.15 k) are connected in series to a battery of 15V EMF in a circuit shown below. The key has been kept closed for a long time. Then at t = 0, is opened and key is closed simultaneously. At t = 1 ms, the current in the circuit will be ( =150)
An inductor (L = 0.03H) and a resistor (R = 0.15 k) are connected in series to a battery of 15V EMF in a circuit shown below. The key has been kept closed for a long time. Then at t = 0, is opened and key is closed simultaneously. At t = 1 ms, the current in the circuit will be ( =150)
physics-General
physics-
In the circuit shown here, the point ‘C’ is kept connected to point ‘A’ till the current flowing through the circuit becomes constant. Afterward, suddenly, point ‘C’ is disconnected from point ‘A’ and connected to point ‘B’ at time t = 0. Ratio of the voltage across resistance and the inductor at t = L/R will be equal to :
In the circuit shown here, the point ‘C’ is kept connected to point ‘A’ till the current flowing through the circuit becomes constant. Afterward, suddenly, point ‘C’ is disconnected from point ‘A’ and connected to point ‘B’ at time t = 0. Ratio of the voltage across resistance and the inductor at t = L/R will be equal to :
physics-General
physics-
In an LCR circuit as shown below both switches are open initially. Now switch is closed, kept open. (q is charge on the capacitor and is Capacitive time constant). Which of the following statement is correct?
In an LCR circuit as shown below both switches are open initially. Now switch is closed, kept open. (q is charge on the capacitor and is Capacitive time constant). Which of the following statement is correct?
physics-General
physics-
A metallic rod of length ‘l’ is tied to a string of length 2l and made to rotate with angular speed on a horizontal table with one end of the string fixed. If there is a vertical magnetic field ‘B’ in the region, the e.m.f. induced across the ends of the rod is:
A metallic rod of length ‘l’ is tied to a string of length 2l and made to rotate with angular speed on a horizontal table with one end of the string fixed. If there is a vertical magnetic field ‘B’ in the region, the e.m.f. induced across the ends of the rod is:
physics-General
physics-
A rectangular loop has a sliding connector PQ of length and resistance R and it is moving with a speed v as shown. The set-up is placed in a uniform magnetic field going into the plane of the paper. The three currents and I are :
A rectangular loop has a sliding connector PQ of length and resistance R and it is moving with a speed v as shown. The set-up is placed in a uniform magnetic field going into the plane of the paper. The three currents and I are :
physics-General
physics-
An inductor of inductance L = 400 mH and resistors of resistances R1 = 2 and R2 = 2 are connected to a battery of emf 12 V as shown in the figure. The internal resistance of the battery is negligible. The switch S is closed at t = 0. The potential drop across L as a function of time is
An inductor of inductance L = 400 mH and resistors of resistances R1 = 2 and R2 = 2 are connected to a battery of emf 12 V as shown in the figure. The internal resistance of the battery is negligible. The switch S is closed at t = 0. The potential drop across L as a function of time is
physics-General
physics-
An inductor (L = 100 mH), a resistor (R = 100 ) and a battery (E = 100 V) are initially connected in series as shown in the figure. After a long time the battery is disconnected after short circuiting the points A and B. The current in the circuit, 1 ms after the short circuit is:
An inductor (L = 100 mH), a resistor (R = 100 ) and a battery (E = 100 V) are initially connected in series as shown in the figure. After a long time the battery is disconnected after short circuiting the points A and B. The current in the circuit, 1 ms after the short circuit is:
physics-General
physics-
One conducting u tube can slide inside another as shown in figure, maintaining electrical contacts between the tubes. The magnetic field B is perpendicular to the plane of the figure. If each tube moves towards the other at a constant speed v, then the emf induced in the circuit in terms of B, and v, where is the width of each tube, will be
One conducting u tube can slide inside another as shown in figure, maintaining electrical contacts between the tubes. The magnetic field B is perpendicular to the plane of the figure. If each tube moves towards the other at a constant speed v, then the emf induced in the circuit in terms of B, and v, where is the width of each tube, will be
physics-General
chemistry-
Aqueous solution of salt of strong base and weak acid
Aqueous solution of salt of strong base and weak acid
chemistry-General
physics-
Figure shows a conducting rod of negligible resistance that can slide on smooth U-shaped rail made of wire of resistance 1 /m. Position of the conducting rod at t = 0 is shown. A time t dependent magnetic field B = 2t Tesla is switched on at t = 0
Following situation of the previous question, the magnitude of the force required to move the conducting rod at constant speed 5 cm/s at the same instant t = 2s, is equal to
Figure shows a conducting rod of negligible resistance that can slide on smooth U-shaped rail made of wire of resistance 1 /m. Position of the conducting rod at t = 0 is shown. A time t dependent magnetic field B = 2t Tesla is switched on at t = 0
Following situation of the previous question, the magnitude of the force required to move the conducting rod at constant speed 5 cm/s at the same instant t = 2s, is equal to
physics-General