Maths-
General
Easy

Question

Sketch the graph of each function :

hintHint:

The vertex form of a quadratic function is
f(x) = a(x – h)2 + k
Where a, h, and k are constants. Here, h represents horizontal translation, a represents vertical translation and (h,k) is the vertex of the parabola. Also, a represents the Vertical stretch/shrink of the parabola and if a is negative, then the graph is reflected over the x-axis.
 

The correct answer is: Hence, the graph of h(x) is plotted above


    G(x)= -2(x-0.5)2 +1
    Given, G(x)= -2(x-0.5)2 +1
    Here, h = 0.5, k = 1 and a = -2
    So, the vertex of the parabola is (0.5,1) and the axis of the symmetry is x = 0.5. As a < 0, so h(x) with open downwards.
    The graph can be plotted as

    Final Answer:
    Hence, the graph of h(x) is plotted above.

    Related Questions to study

    General
    Maths-

    Sketch the graph of each function f(x)= 0.5(x+2)2+2

    Sketch the graph of each function f(x)= 0.5(x+2)2+2

    Maths-General
    General
    Maths-

    Solve the following simultaneous equations graphically :
    X+2Y=5
    2X+Y=4

    Solve the following simultaneous equations graphically :
    X+2Y=5
    2X+Y=4

    Maths-General
    General
    Maths-

    How does the graph of g(x) = x2 - 3 compare to that of f(x) = x2

    How does the graph of g(x) = x2 - 3 compare to that of f(x) = x2

    Maths-General
    parallel
    General
    Maths-

    Sketch the graph of the function h(x)= -2(x-2)2 -2

    Sketch the graph of the function h(x)= -2(x-2)2 -2

    Maths-General
    General
    Maths-

    Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their feet is 12 m, then find the distance between their tops.

    Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their feet is 12 m, then find the distance between their tops.

    Maths-General
    General
    Maths-

    A computer game designer uses the function f(x)= 4(x-2)2+6 to model the path of the fish. At what other point does the squid’s path intersect the path of the fish?

    The values for various parameters are calculated using quadratic functions. They are depicted graphically by a parabola. The coefficient determines the direction of the curve with the highest degree. From the word "quad," which means square, comes the word "quadratic." In other words, a "polynomial function of degree 2" is a quadratic function. Quadratic functions are used in numerous contexts.
    ¶The parent quadratic function connects the points whose coordinates have the form f(x) = x2 and is of the form (number, number2). This function, which typically takes f(x) = a(x - h)2 + k, can be transformed. It can also be changed to f(x) = ax2 + bx + c. In the following sections, let's examine each of these in greater detail.

    A computer game designer uses the function f(x)= 4(x-2)2+6 to model the path of the fish. At what other point does the squid’s path intersect the path of the fish?

    Maths-General

    The values for various parameters are calculated using quadratic functions. They are depicted graphically by a parabola. The coefficient determines the direction of the curve with the highest degree. From the word "quad," which means square, comes the word "quadratic." In other words, a "polynomial function of degree 2" is a quadratic function. Quadratic functions are used in numerous contexts.
    ¶The parent quadratic function connects the points whose coordinates have the form f(x) = x2 and is of the form (number, number2). This function, which typically takes f(x) = a(x - h)2 + k, can be transformed. It can also be changed to f(x) = ax2 + bx + c. In the following sections, let's examine each of these in greater detail.

    parallel
    General
    Maths-

    How does the graph of g(x)= x2 - 4 compare to that of f(x) = x2

    How does the graph of g(x)= x2 - 4 compare to that of f(x) = x2

    Maths-General
    General
    Maths-

    Solve the following simultaneous equations graphically :
    2X+Y-3=0
    3X+2Y-4= 0

    Solve the following simultaneous equations graphically :
    2X+Y-3=0
    3X+2Y-4= 0

    Maths-General
    General
    Maths-

    Suppose a goalie kicks a soccer ball. The ball travels in a parabolic path from point (0,0) to (57,0). Consider a quadratic function in vertex form for the path of the ball. Which values can you determine? What values are you unable to determine? Explain.

    A polynomial function is referred to as quadratic if it has one or more variables and a variable with a maximum exponent of two. It is sometimes referred to as the polynomial of degree 2 since the greatest degree term in a quadratic function is of the second degree.
    The locations whose coordinates are of the form are connected by the parent quadratic function, which has the form f(x) = x2 (number, number2). The parent quadratic function joins the places whose coordinates have the form f(x) = x2 (number, number2). This function, which generally has the form f(x) = a (x - h)2 + k, can be transformed to take the form f(x) = ax2 + bx + c.

    Suppose a goalie kicks a soccer ball. The ball travels in a parabolic path from point (0,0) to (57,0). Consider a quadratic function in vertex form for the path of the ball. Which values can you determine? What values are you unable to determine? Explain.

    Maths-General

    A polynomial function is referred to as quadratic if it has one or more variables and a variable with a maximum exponent of two. It is sometimes referred to as the polynomial of degree 2 since the greatest degree term in a quadratic function is of the second degree.
    The locations whose coordinates are of the form are connected by the parent quadratic function, which has the form f(x) = x2 (number, number2). The parent quadratic function joins the places whose coordinates have the form f(x) = x2 (number, number2). This function, which generally has the form f(x) = a (x - h)2 + k, can be transformed to take the form f(x) = ax2 + bx + c.

    parallel
    General
    Maths-

    The function f(x)= - (x-1)2 +8 models the path of a volleyball. The height of a net is 7 ft 4 in. will the ball go over if the player is 2 ft from the net? Explain.

    The function f(x)= - (x-1)2 +8 models the path of a volleyball. The height of a net is 7 ft 4 in. will the ball go over if the player is 2 ft from the net? Explain.

    Maths-General
    General
    Maths-

    A pole of length 10 m casts a shadow 2 m long on the ground. At the same time, a tower casts a shadow of length of 60 m on the ground. Find the height of the tower.

    A pole of length 10 m casts a shadow 2 m long on the ground. At the same time, a tower casts a shadow of length of 60 m on the ground. Find the height of the tower.

    Maths-General
    General
    Maths-

    Solve the following simultaneous equations graphically :
    4X-Y=5
    5Y-4X=7

    Solve the following simultaneous equations graphically :
    4X-Y=5
    5Y-4X=7

    Maths-General
    parallel
    General
    Maths-

    Solve the following simultaneous equations graphically :
    X+3Y= 8
    3X= 2+2y

    Solve the following simultaneous equations graphically :
    X+3Y= 8
    3X= 2+2y

    Maths-General
    General
    Maths-

    Solve graphically the following equations :
    3X+5Y= 12
    3X-5Y+18=0

    Solve graphically the following equations :
    3X+5Y= 12
    3X-5Y+18=0

    Maths-General
    General
    Maths-

    Shade the triangle formed by the graphs of 2x + y = 4, x – y = 2 and the y-axis.
    Write the co-ordinates of vertices of the triangle.

    Shade the triangle formed by the graphs of 2x + y = 4, x – y = 2 and the y-axis.
    Write the co-ordinates of vertices of the triangle.

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.