Maths-
General
Easy

Question

If y c o s invisible function application x plus x c o s invisible function application y equals pi, then y to the power of ´ ´ end exponent left parenthesis 0 right parenthesis is

  1. 1    
  2. p    
  3. 0    
  4. p    

hintHint:

In this question, given is, ycosx + xcosy =π , we have to find the value of y’’ (0). Firstly, separate the y and find it second derivate with respect to x.

The correct answer is: 0


    Here we have to find the value of y’’ (0).
    Firstly, we have given,
    y cosx + x cosy = π ... (1)
    Differentiating (1) w.r.t x
    −y sinx + y′cosx + cosy − (x siny)y′ = 0
    Or
    −y sinx + cosy + y′(cosx−xsiny) =0 ... (2)
    Again differentiate (2) w.r.t. x for second derivative,
    −y cosx − y′ sinx − (−siny ) y′ + y′′ [ cosx – xsiny ] + y′ (−sinx − 1. siny − xcosy.y′) = 0 ... (3)
    Putting x=0 in (1), we get, y = π
    Putting x=0 and y = π in (2),
    we get, 0 + cosπ + y′ ( −1 −π sinπ)
    or
    −1−y′ = 0
    ∴y′ = −1
    Putting x=0 and y= π and y′=1 in (3), we get,
    y′0) =0.
    Therefore, the correct answer is 0.

    In this question, we have given ycosx + xcosy =π . Differentiate this equation with request to x and do separate second derivate and find the value of it.

    Related Questions to study

    General
    Maths-

    The solution of the differential equation x to the power of 4 end exponent fraction numerator d y over denominator d x end fraction plus x to the power of 3 end exponent y plus c o s e c invisible function application left parenthesis x y right parenthesis equals 0 is equal to

    In this question, you have to find the solution of differential equation x4 fraction numerator d y over denominator d x end fraction + x3 y + cosec (xy) = 0. Use variable separable method to find the solution.

    The solution of the differential equation x to the power of 4 end exponent fraction numerator d y over denominator d x end fraction plus x to the power of 3 end exponent y plus c o s e c invisible function application left parenthesis x y right parenthesis equals 0 is equal to

    Maths-General

    In this question, you have to find the solution of differential equation x4 fraction numerator d y over denominator d x end fraction + x3 y + cosec (xy) = 0. Use variable separable method to find the solution.

    General
    Maths-

    A continuously differentiable function ϕ left parenthesis x right parenthesis in invisible function application left parenthesis 0 comma pi right parenthesis satisfying y to the power of straight prime equals 1 plus y squared comma y left parenthesis 0 right parenthesis equals 0 equals y left parenthesis pi right parenthesis is

    A continuously differentiable function ϕ left parenthesis x right parenthesis in invisible function application left parenthesis 0 comma pi right parenthesis satisfying y to the power of straight prime equals 1 plus y squared comma y left parenthesis 0 right parenthesis equals 0 equals y left parenthesis pi right parenthesis is

    Maths-General
    General
    Maths-

    The slope of the tangent at left parenthesis x comma y right parenthesis to a curve passing through open parentheses 1 comma pi over 4 close parentheses is given by y over x minus cos squared invisible function application open parentheses y over x close parentheses, then the equation of the curve is

    The slope of the tangent at left parenthesis x comma y right parenthesis to a curve passing through open parentheses 1 comma pi over 4 close parentheses is given by y over x minus cos squared invisible function application open parentheses y over x close parentheses, then the equation of the curve is

    Maths-General
    parallel
    General
    Maths-

    A solution of the differential equation open parentheses fraction numerator d y over denominator d x end fraction close parentheses squared minus x fraction numerator d y over denominator d x end fraction plus y equals 0 is

    A solution of the differential equation open parentheses fraction numerator d y over denominator d x end fraction close parentheses squared minus x fraction numerator d y over denominator d x end fraction plus y equals 0 is

    Maths-General
    General
    Maths-

    If integrating factor of x open parentheses 1 minus x squared close parentheses d y plus open parentheses 2 x squared y minus y minus a x cubed close parentheses d x equals 0 is e to the power of integral P d x then P is equal to

    If integrating factor of x open parentheses 1 minus x squared close parentheses d y plus open parentheses 2 x squared y minus y minus a x cubed close parentheses d x equals 0 is e to the power of integral P d x then P is equal to

    Maths-General
    General
    Maths-

    The solution of the given differential equation fraction numerator d y over denominator d x end fraction plus 2 x y equals y is

    The solution of the given differential equation fraction numerator d y over denominator d x end fraction plus 2 x y equals y is

    Maths-General
    parallel
    General
    Maths-

    The general solution of y squared d x plus open parentheses x squared minus x y plus y squared close parentheses d y equals 0 is

    The general solution of y squared d x plus open parentheses x squared minus x y plus y squared close parentheses d y equals 0 is

    Maths-General
    General
    Maths-

    The solution of the differential equation fraction numerator d y over denominator d x end fraction equals y over x plus fraction numerator ϕ open parentheses y over x close parentheses over denominator ϕ to the power of straight prime open parentheses y over x close parentheses end fraction is

    The solution of the differential equation fraction numerator d y over denominator d x end fraction equals y over x plus fraction numerator ϕ open parentheses y over x close parentheses over denominator ϕ to the power of straight prime open parentheses y over x close parentheses end fraction is

    Maths-General
    General
    Maths-

    The solution of the differential equation x space d y divided by d x equals y left parenthesis log invisible function application y minus log invisible function application x plus 1 right parenthesis spaceis

    The solution of the differential equation x space d y divided by d x equals y left parenthesis log invisible function application y minus log invisible function application x plus 1 right parenthesis spaceis

    Maths-General
    parallel
    General
    Maths-

    The solution of the differential equation square root of a plus x end root fraction numerator d y over denominator d x end fraction plus x y equals 0 is

    A differential equation is an equation which contains one or more terms and the derivatives of one variable (i.e., dependent variable) with respect to the other variable (i.e., independent variable) dy/dx = f(x)

    The solution of the differential equation square root of a plus x end root fraction numerator d y over denominator d x end fraction plus x y equals 0 is

    Maths-General

    A differential equation is an equation which contains one or more terms and the derivatives of one variable (i.e., dependent variable) with respect to the other variable (i.e., independent variable) dy/dx = f(x)

    General
    maths-

    The solution of fraction numerator d to the power of 2 end exponent y over denominator d x to the power of 2 end exponent end fraction equals sec to the power of 2 end exponent invisible function application x plus x e to the power of x end exponent is

    The solution of fraction numerator d to the power of 2 end exponent y over denominator d x to the power of 2 end exponent end fraction equals sec to the power of 2 end exponent invisible function application x plus x e to the power of x end exponent is

    maths-General
    General
    maths-

    The solution of the differential equation x fraction numerator d to the power of 2 end exponent y over denominator d x to the power of 2 end exponent end fraction equals 1, given that y equals 1 comma   fraction numerator d y over denominator d x end fraction equals 0 when x equals 1, is

    The solution of the differential equation x fraction numerator d to the power of 2 end exponent y over denominator d x to the power of 2 end exponent end fraction equals 1, given that y equals 1 comma   fraction numerator d y over denominator d x end fraction equals 0 when x equals 1, is

    maths-General
    parallel
    General
    maths-

    Solution of cos invisible function application x fraction numerator d y over denominator d x end fraction plus y sin invisible function application x equals 1 is

    Solution of cos invisible function application x fraction numerator d y over denominator d x end fraction plus y sin invisible function application x equals 1 is

    maths-General
    General
    maths-

    Integrating factor of fraction numerator d y over denominator d x end fraction plus fraction numerator y over denominator x end fraction equals x to the power of 3 end exponent minus 3 is

    Integrating factor of fraction numerator d y over denominator d x end fraction plus fraction numerator y over denominator x end fraction equals x to the power of 3 end exponent minus 3 is

    maths-General
    General
    maths-

    Integrating factor of differential equation cos invisible function application x fraction numerator d y over denominator d x end fraction plus y sin invisible function application x equals 1 is

    Integrating factor of differential equation cos invisible function application x fraction numerator d y over denominator d x end fraction plus y sin invisible function application x equals 1 is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.