Maths-
General
Easy

Question

L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos invisible function application x right parenthesis minus b sin invisible function application x over denominator x cubed end fraction equals 1 text  then  end text straight a equals comma straight b equals

  1. fraction numerator negative 5 over denominator 2 end fraction comma fraction numerator negative 3 over denominator 2 end fraction
  2. 5 over 2 3 over 2
  3. 2 over 3 comma 5 over 2
  4. 3 over 2 comma 1 half

hintHint:

To solve the limit of the function we will have to apply L hospital theorem from which we will get an equation with a and b after that again we have to apply L hospital theorem to get one more equation with a and b, now we can get the value of a and b using the two equations.

The correct answer is: fraction numerator negative 5 over denominator 2 end fraction comma fraction numerator negative 3 over denominator 2 end fraction


    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x left parenthesis 1 plus a cos x right parenthesis minus b sin x over denominator x cubed end fraction equals 1
L. H. S equals space limit as x rightwards arrow 0 of fraction numerator x left parenthesis 1 plus a cos x right parenthesis minus b sin x over denominator x cubed end fraction
u sin g space L space H o s p i t a l space t h e o r e m comma space
equals limit as x rightwards arrow 0 of fraction numerator begin display style fraction numerator d x over denominator d x end fraction end style left parenthesis 1 plus a cos x right parenthesis plus x. begin display style fraction numerator d open parentheses 1 plus a cos x close parentheses over denominator d x end fraction end style minus begin display style fraction numerator d b sin x over denominator d x end fraction end style over denominator begin display style fraction numerator d x cubed over denominator d x end fraction end style end fraction
equals limit as x rightwards arrow 0 of fraction numerator 1 plus a. cos x plus x left parenthesis negative a sin x right parenthesis minus b c s o x over denominator 3 x squared end fraction
equals limit as x rightwards arrow 0 of fraction numerator 1 plus a cos x minus a x sin x minus b cos x over denominator 3 x squared end fraction
equals limit as x rightwards arrow 0 of fraction numerator 1 plus cos x left parenthesis a minus b right parenthesis minus x left parenthesis a sin x right parenthesis over denominator 3 x squared end fraction
n o w comma rightwards double arrow limit as x rightwards arrow 0 of fraction numerator 1 plus cos x left parenthesis a minus b right parenthesis minus x left parenthesis a sin x right parenthesis over denominator 3 x squared end fraction equals 1
rightwards double arrow limit as x rightwards arrow 0 of 1 plus cos x left parenthesis a minus b right parenthesis minus x left parenthesis a sin x right parenthesis equals 3 x squared
rightwards double arrow space 1 plus a minus b equals 0
rightwards double arrow a plus 1 equals b......... e q u a t i o n space 1
u sin g space L space h o s p i t a l space t h e o r e m space a g a i n comma space
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator begin display style fraction numerator d 1 over denominator d x end fraction end style plus left parenthesis a minus b right parenthesis begin display style fraction numerator d cos x over denominator d x end fraction end style minus left parenthesis begin display style fraction numerator d x over denominator d x end fraction end style left parenthesis a sin x space right parenthesis plus x. begin display style fraction numerator d a sin x over denominator d x end fraction end style right parenthesis over denominator 3 begin display style fraction numerator d x squared over denominator d x end fraction end style end fraction
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator a minus b left parenthesis negative sin x right parenthesis minus left parenthesis a sin x plus x a cos x right parenthesis over denominator 6 x end fraction
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator negative a sin x plus b sin x minus a sin x minus x a cos x over denominator 6 x end fraction
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator negative 2 a sin x plus b sin x minus x a cos x over denominator 6 x end fraction
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator left parenthesis b minus 2 a right parenthesis sin x over denominator 6 x end fraction minus fraction numerator x a cos x over denominator 6 x end fraction
rightwards double arrow limit as x rightwards arrow 0 of fraction numerator left parenthesis b minus 2 a right parenthesis sin x over denominator 6 x end fraction minus limit as x rightwards arrow 0 of fraction numerator a cos x over denominator 6 end fraction
n o w comma space rightwards double arrow fraction numerator b minus 2 a over denominator 6 end fraction minus a over 6 equals 1 rightwards double arrow b minus 2 a minus a equals 6 rightwards double arrow b minus 3 a equals 6... e q u a t i o n space 2
b y space e q u a t i o n space 1 space a n d space 2 comma
a plus 1 minus 3 a equals 6
1 minus 2 a equals 6
minus 2 a equals 6 minus 1
a equals fraction numerator negative 5 over denominator 2 end fraction
b equals fraction numerator negative 5 over denominator 2 end fraction plus 1 equals fraction numerator negative 3 over denominator 2 end fraction

    Related Questions to study

    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator x 10 to the power of x minus x over denominator 1 minus cos space x end fraction equals

    Maths-General
    General
    Maths-

    L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

    L t subscript n not stretchy rightwards arrow straight infinity end subscript fraction numerator n open parentheses 1 cubed plus 2 cubed plus midline horizontal ellipsis times plus n cubed close parentheses squared over denominator open parentheses 1 squared plus 2 squared plus midline horizontal ellipsis plus n squared close parentheses cubed end fraction equals

    Maths-General
    General
    Maths-

    If fraction numerator b over denominator c plus a end fraction plus fraction numerator c over denominator a plus b end fraction equals 1then

    If fraction numerator b over denominator c plus a end fraction plus fraction numerator c over denominator a plus b end fraction equals 1then

    Maths-General
    parallel
    General
    maths-

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator 1 over denominator sin squared begin display style space end style x end fraction minus fraction numerator 1 over denominator sinh squared space x end fraction equals

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator 1 over denominator sin squared begin display style space end style x end fraction minus fraction numerator 1 over denominator sinh squared space x end fraction equals

    maths-General
    General
    Maths-

    The quadratic equation whose roots are I and m where l =lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 3 sin space theta minus 4 sin cubed space theta over denominator theta end fraction close parentheses m equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 2 tan space theta over denominator theta open parentheses 1 minus tan squared space theta close parentheses end fraction close parentheses is

    The quadratic equation whose roots are I and m where l =lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 3 sin space theta minus 4 sin cubed space theta over denominator theta end fraction close parentheses m equals lim for theta not stretchy rightwards arrow 0 of   open parentheses fraction numerator 2 tan space theta over denominator theta open parentheses 1 minus tan squared space theta close parentheses end fraction close parentheses is

    Maths-General
    General
    Maths-

    In straight triangle A B C comma left parenthesis a plus b plus c right parenthesis open parentheses tan invisible function application A over 2 plus tan invisible function application B over 2 close parentheses equals

    In straight triangle A B C comma left parenthesis a plus b plus c right parenthesis open parentheses tan invisible function application A over 2 plus tan invisible function application B over 2 close parentheses equals

    Maths-General
    parallel
    General
    Maths-

    Let f : [-10, 10] →R, where f(x) = sin x + open square brackets fraction numerator x to the power of 2 end exponent over denominator a end fraction close square brackets be an odd function. Then set of values of parameter a is/are

    Let f : [-10, 10] →R, where f(x) = sin x + open square brackets fraction numerator x to the power of 2 end exponent over denominator a end fraction close square brackets be an odd function. Then set of values of parameter a is/are

    Maths-General
    General
    physics-

    Light wave enters from medium 1 to medium 2. Its velocity in 2nd medium is double from 1st. For total internal reflection the angle of incidence must be greater than

    Light wave enters from medium 1 to medium 2. Its velocity in 2nd medium is double from 1st. For total internal reflection the angle of incidence must be greater than

    physics-General
    General
    maths-

    If the function not stretchy integral subscript 0 end subscript superscript x end superscript blankf(x) dt → 5 as |x| → I, then the value of ‘a’ so that the equation 2x + not stretchy integral subscript 0 end subscript superscript x end superscript blankf(t) dt = a has at least two roots of opposite signs in (-1, 1) is

    If the function not stretchy integral subscript 0 end subscript superscript x end superscript blankf(x) dt → 5 as |x| → I, then the value of ‘a’ so that the equation 2x + not stretchy integral subscript 0 end subscript superscript x end superscript blankf(t) dt = a has at least two roots of opposite signs in (-1, 1) is

    maths-General
    parallel
    General
    Maths-

    In straight triangle A B C comma fraction numerator a left parenthesis cos invisible function application B plus cos invisible function application C right parenthesis over denominator 2 left parenthesis b plus c right parenthesis end fraction equals

    In straight triangle A B C comma fraction numerator a left parenthesis cos invisible function application B plus cos invisible function application C right parenthesis over denominator 2 left parenthesis b plus c right parenthesis end fraction equals

    Maths-General
    General
    chemistry-

    On Bohr’s stationary orbits -

    On Bohr’s stationary orbits -

    chemistry-General
    General
    chemistry-

    For a valid Bohr orbit, its cicumfrence should be -

    For a valid Bohr orbit, its cicumfrence should be -

    chemistry-General
    parallel
    General
    chemistry-

    Arrange the following particles in increasing order of values of e/m ratio: Electron (e), proton (p), neutron (n) and α-particle (α) -

    Arrange the following particles in increasing order of values of e/m ratio: Electron (e), proton (p), neutron (n) and α-particle (α) -

    chemistry-General
    General
    Maths-

    In straight triangle A B C comma open parentheses fraction numerator b minus c over denominator a end fraction close parentheses sin invisible function application open parentheses fraction numerator B plus C over denominator 2 end fraction close parentheses equals

    In straight triangle A B C comma open parentheses fraction numerator b minus c over denominator a end fraction close parentheses sin invisible function application open parentheses fraction numerator B plus C over denominator 2 end fraction close parentheses equals

    Maths-General
    General
    physics-

    An antenna behaves as resonant circuit only when its length is

    An antenna behaves as resonant circuit only when its length is

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.