Maths-
General
Easy

Question

The number of real values of k for which the lines x – 2y + 3 = 0, kx + 3y + 1 = 0 and 4x – ky + 2 = 0 are concurrent is

  1. 0    
  2. 1    
  3. 2    
  4. infinite    

hintHint:

We are given equation of three lines. We have to find the value of K such that the given lines are concurrent. It means they pass through single point. For lines to be concurrent, the determinant of their coefficients should be zero. We have to find the real values of K.
.

The correct answer is: 0


    The given lines are as follows
    x - 2y + 3 = 0
    Kx + 3y + 1 = 0
    4x - ky + 2 = 0
    We will take the determinant of the coefficients
    open vertical bar table row 1 cell negative 2 end cell 3 row K 3 1 row 4 cell negative K end cell 2 end table close vertical bar space equals space 0
1 left parenthesis 6 space plus space K right parenthesis space minus space 2 left parenthesis 2 K space minus space 4 right parenthesis space plus 3 left parenthesis negative k squared space minus space 12 right parenthesis space equals space 0
6 space plus space K space minus 4 K space plus space 8 space minus 3 k squared space minus space 36 space equals space 0
minus 3 K squared space plus space 5 K space minus space 38 space equals space 0
3 K squared space minus space 5 K space plus space 38 space equals space 0
    To find the roots we will use the formula to solve quadratic equations.
    K space equals space fraction numerator negative b space plus-or-minus square root of b squared space minus 4 a c end root over denominator 2 a end fraction
b space i s space t h e space c o e f f i c i e n t space o f space K
a space i s space t h e space c o e f f i c i e n t space o f space K squared
c space i s space t h e space c o n s tan t
    we will first find the value of b2 - 4ac
    b2 - 4ac = (-5)2 - 4(3)(38)
    = 25 - 456
    = -431
    So, b - 4ac < 0
    It doesn't have any real values. As, the value under is negative.
    The answer is zero.

    For such questions, we should know properties of concurrent lines.

    Related Questions to study

    General
    Maths-

    The distance of the line 2x – 3y = 4 from the point (1, 1) in the direction of the line x + y = 1 is

    The distance of the line 2x – 3y = 4 from the point (1, 1) in the direction of the line x + y = 1 is

    Maths-General
    General
    Maths-

    The mid points of the sides of a triangle are (5, 0), (5, 12) and (0, 12). The orthocentre of this triangle is

    The mid points of the sides of a triangle are (5, 0), (5, 12) and (0, 12). The orthocentre of this triangle is

    Maths-General
    General
    Maths-

    The image of the point A (1, 2) by the line mirror y = x is the point B and the image of B by line mirror y = 0 is the point

    The image of the point A (1, 2) by the line mirror y = x is the point B and the image of B by line mirror y = 0 is the point

    Maths-General
    parallel
    General
    Maths-

    If y equals T a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus a to the power of 2 end exponent x to the power of 2 end exponent end root minus 1 over denominator a x end fraction close parentheses text  then  end text open parentheses 1 plus a to the power of 2 end exponent x to the power of 2 end exponent close parentheses y to the power of parallel to end exponent plus 2 a to the power of 2 end exponent x y to the power of ´ end exponent equals

    For such questions, we should know different trigonometric formulas. We should simplify the function first before finding derivatives.

    If y equals T a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus a to the power of 2 end exponent x to the power of 2 end exponent end root minus 1 over denominator a x end fraction close parentheses text  then  end text open parentheses 1 plus a to the power of 2 end exponent x to the power of 2 end exponent close parentheses y to the power of parallel to end exponent plus 2 a to the power of 2 end exponent x y to the power of ´ end exponent equals

    Maths-General

    For such questions, we should know different trigonometric formulas. We should simplify the function first before finding derivatives.

    General
    Maths-

    If y equals c o s to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a to the power of 2 end exponent minus x to the power of 2 end exponent over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses plus s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 a x over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses text  then  end text fraction numerator d y over denominator d x end fraction equals

    For such questions, we should know the formulas of inverse functions.

    If y equals c o s to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a to the power of 2 end exponent minus x to the power of 2 end exponent over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses plus s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 a x over denominator a to the power of 2 end exponent plus x to the power of 2 end exponent end fraction close parentheses text  then  end text fraction numerator d y over denominator d x end fraction equals

    Maths-General

    For such questions, we should know the formulas of inverse functions.

    General
    Maths-

    If y equals s i n invisible function application 2 x s i n invisible function application 3 x s i n invisible function application 4 x text  then  end text y to the power of parallel to end exponent equals

    For such questions, we should know different formulas.

    If y equals s i n invisible function application 2 x s i n invisible function application 3 x s i n invisible function application 4 x text  then  end text y to the power of parallel to end exponent equals

    Maths-General

    For such questions, we should know different formulas.

    parallel
    General
    Maths-

    fraction numerator d over denominator d x end fraction open curly brackets Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus x to the power of 2 end exponent end root minus 1 over denominator x end fraction close parentheses close curly brackets equals

    For such questions, we will use different formulas.

    fraction numerator d over denominator d x end fraction open curly brackets Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator square root of 1 plus x to the power of 2 end exponent end root minus 1 over denominator x end fraction close parentheses close curly brackets equals

    Maths-General

    For such questions, we will use different formulas.

    General
    Maths-

    The length of the perpendicular from the incentre of the triangle formed by the axes and the line fraction numerator x over denominator 3 end fraction plus fraction numerator y over denominator 4 end fraction equals 1 to the hypotenuse is

    The length of the perpendicular from the incentre of the triangle formed by the axes and the line fraction numerator x over denominator 3 end fraction plus fraction numerator y over denominator 4 end fraction equals 1 to the hypotenuse is

    Maths-General
    General
    Maths-

    If theta is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram

    If theta is the angle between two adjacent sides of a parallelogram and p, q are the distances between the parallel sides, then the area of the parallelogram

    Maths-General
    parallel
    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator a x plus b over denominator c x plus d end fraction close parentheses equals

    For such questions, we should know how to use u by v method.

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator a x plus b over denominator c x plus d end fraction close parentheses equals

    Maths-General

    For such questions, we should know how to use u by v method.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses e to the power of x to the power of 2 end exponent end exponent a to the power of x end exponent close parentheses equals

    For such questions, we should know u.v method.

    fraction numerator d over denominator d x end fraction open parentheses e to the power of x to the power of 2 end exponent end exponent a to the power of x end exponent close parentheses equals

    Maths-General

    For such questions, we should know u.v method.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application square root of fraction numerator 1 minus c o s invisible function application x over denominator 1 plus c o s invisible function application x end fraction end root close parentheses equals

    We should know different formulas to solve such questions.

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application square root of fraction numerator 1 minus c o s invisible function application x over denominator 1 plus c o s invisible function application x end fraction end root close parentheses equals

    Maths-General

    We should know different formulas to solve such questions.

    parallel
    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a minus x over denominator 1 plus infinity x end fraction close parentheses close parentheses equals

    For such questions, we should know different formulas.

    fraction numerator d over denominator d x end fraction open parentheses Tan to the power of negative 1 end exponent invisible function application open parentheses fraction numerator a minus x over denominator 1 plus infinity x end fraction close parentheses close parentheses equals

    Maths-General

    For such questions, we should know different formulas.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses cosec to the power of negative 1 end exponent invisible function application open parentheses e to the power of 2 x plus 1 end exponent close parentheses close parentheses equals

    For such questions, we should know different formulas.

    fraction numerator d over denominator d x end fraction open parentheses cosec to the power of negative 1 end exponent invisible function application open parentheses e to the power of 2 x plus 1 end exponent close parentheses close parentheses equals

    Maths-General

    For such questions, we should know different formulas.

    General
    Maths-

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    fraction numerator d over denominator d x end fraction open parentheses fraction numerator sin invisible function application x over denominator 1 plus c o s invisible function application x end fraction close parentheses equals

    Maths-General

    The alternate method to solve this will be using u by method. It is method used in differentiation when we have a condition of numerator and denominator.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.